Cobalt-doped copper sulfide nanocomposite integrated with graphene oxide as a high-performance conversion anode for aqueous zinc-ion batteries

被引:7
|
作者
Mu, Rongrong [1 ]
Suo, Guoquan [1 ]
Lin, Chuanjin [1 ]
Li, Jiarong [1 ]
Javed, Shazam [1 ]
Hou, Xiaojiang [1 ]
Ye, Xiaohui [1 ]
Yang, Yanling [1 ]
Zhang, Li [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc-ion batteries; Anode; Copper sulfide; Cobalt doping; Graphene oxide; Nanocomposite;
D O I
10.1016/j.cej.2024.155816
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rechargeable aqueous zinc-ion batteries (ZIBs) encounter substantial obstacles arising from the inherent dilemmas of dendrite growth, hydrogen gas evolution, and corrosion affiliated with zinc metal anodes, thereby highlighting the necessity for researching conversion anode materials as a promising pathway forward. Copper sulfide (CuS) has been demonstrated as a promising conversion anode material for ZIBs due to its notable electrochemical performance, while challenges persist regarding the Coulombic interactions between Zn2+ and host anions, coupled with the material's fundamental conductivity that remains less than fully satisfactory. To address the above issues, we have designed and synthesized a nanostructured composite of cobalt doped CuS integrated in graphene oxide frames (GO/Co-CuS) as anode for ZIBs. The cobalt doping serves to alleviate Coulomb interaction (Coulomb attraction) between Zn2+ and host anions, thereby enhancing the kinetics of Zn2+ diffusion. Furthermore, the incorporation of GO framework improves the electrical conductivity of the material and mitigates volume expansion during the reaction process. The synergistic effect engendered by the combination of cobalt doping and the incorporation of a GO framework results in the remarkable electrochemical performance exhibited by GO/Co-CuS. The GO/Co-CuS composite nanostructure exhibited commendable rate capability and cycling stability. Specifically, it exhibits remarkable rate capability, delivering 296 mAh g(-1) at 1 A/g and 168 mAh g(-1) at 10 A/g. Furthermore, after 1000 cycles at a high current density of 10 A/g, it maintains a capacity of 166 mAh g(-1), demonstrating exceptional cycling stability. Additionally, the full-cell configuration of GO/Co-CuS//MnO2@CNTs, when cycled 241 times at 2 A/g, retains a capacity of 79 mAh g(-1), thereby confirming the practical efficacy of the GO/Co-CuS nanocomposite as an efficient conversion anode for ZIBs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Polyaniline/graphene oxide nanocomposite as an innovative cathode for high energy density aqueous zinc-ion batteries
    Wang, Biao
    Ma, An-ning
    She, Jiaxuan
    Zhao, Ziyao
    Xia, En-Jie
    Deng, Shu-Hao
    ELECTROCHIMICA ACTA, 2024, 506
  • [2] A Superlattice-Stabilized Layered CuS Anode for High-Performance Aqueous Zinc-Ion Batteries
    Zhang, Jiaqian
    Lei, Qi
    Ren, Zhiguo
    Zhu, Xiaohui
    Li, Ji
    Li, Zhao
    Liu, Shilei
    Ding, Yiran
    Jiang, Zheng
    Li, Jiong
    Huang, Yaobo
    Li, Xiaolong
    Zhou, Xingtai
    Wang, Yong
    Zhu, Daming
    Zeng, Mengqi
    Fu, Lei
    ACS NANO, 2021, 15 (11) : 17748 - 17756
  • [3] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Bai, Jiayu
    Hu, Songjie
    Feng, Lirong
    Jin, Xinhui
    Wang, Dong
    Zhang, Kai
    Guo, Xiaohui
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [4] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Pu, Xuechao
    Jiang, Baozheng
    Wang, Xianli
    Liu, Wenbao
    Dong, Liubing
    Kang, Feiyu
    Xu, Chengjun
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [5] Design and Conformation of Separators for High-performance Aqueous Zinc-Ion Batteries
    Niu, Ben
    Luo, Die
    He, Xianru
    Wang, Xin
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (65)
  • [6] Facile synthesis of cauliflower-like cobalt-doped Ni3Se2 nanostructures as high-performance cathode materials for aqueous zinc-ion batteries
    Reddy, D. Amaranatha
    Lee, Hwan
    Gopannagari, Madhusudana
    Kumar, D. Praveen
    Kwon, Kiyoung
    Yoo, Hyun Deog
    Kim, Tae Kyu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (13) : 7741 - 7750
  • [7] Copper Hexacyanoferrate Solid-State Electrolyte Protection Layer on Zn Metal Anode for High-Performance Aqueous Zinc-Ion Batteries
    Liu, Yu
    Li, Yuanxia
    Huang, Xiaomin
    Cao, Heng
    Zheng, Qiaoji
    Huo, Yu
    Zhao, Jingxin
    Lin, Dunmin
    Xu, Bingang
    SMALL, 2022, 18 (38)
  • [8] Cobalt-doped molybdenum sulfide as an interlayer facilitates polysulfide conversion to obtain high-performance lithium-sulfur batteries
    Zhao, Hang
    Wu, Jinhua
    Chen, Tiangeng
    Yan, Peng
    Yao, Wei
    Ma, Xinzhi
    Sun, Youjin
    Wang, Wei
    Shi, Miao
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [9] Exploration of Calcium-Doped Manganese Monoxide Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Zou, Ren
    Tang, Zhiwen
    Chen, Xiaolan
    Li, Zhaohui
    Lei, Gangtie
    ENERGY & FUELS, 2022, 36 (21) : 13296 - 13306
  • [10] Gradient Nanoporous Copper-Zinc Alloy Regulating Dendrite-Free Zinc Electrodeposition for High-Performance Aqueous Zinc-Ion Batteries
    Liu, Jie
    Jia, Jian-Hui
    Chen, Li-Bo
    Meng, Huan
    Ran, Qing
    Shi, Hang
    Han, Gao-Feng
    Wang, Tong-Hui
    Wen, Zi
    Lang, Xing-You
    Jiang, Qing
    NANO LETTERS, 2025, 25 (11) : 4298 - 4306