Enhancing wound healing through deep reinforcement learning for optimal therapeutics

被引:0
|
作者
Lu, Fan [1 ]
Zlobina, Ksenia [1 ]
Rondoni, Nicholas A. [1 ]
Teymoori, Sam [1 ]
Gomez, Marcella [1 ]
机构
[1] Univ Calif Santa Cruz, Baskin Sch Engn, Appl Math, Santa Cruz, CA 95064 USA
来源
ROYAL SOCIETY OPEN SCIENCE | 2024年 / 11卷 / 07期
关键词
deep learning; reinforcement learning; optimal adaptive control; wound healing; optimal treatment regime; CLOSED-LOOP CONTROL; PROPOFOL ANESTHESIA; SYSTEMS; DRUG; APPROXIMATION;
D O I
10.1098/rsos.240228
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Finding the optimal treatment strategy to accelerate wound healing is of utmost importance, but it presents a formidable challenge owing to the intrinsic nonlinear nature of the process. We propose an adaptive closed-loop control framework that incorporates deep learning, optimal control and reinforcement learning to accelerate wound healing. By adaptively learning a linear representation of nonlinear wound healing dynamics using deep learning and interactively training a deep reinforcement learning agent for tracking the optimal signal derived from this representation without the need for intricate mathematical modelling, our approach has not only successfully reduced the wound healing time by 45.56% compared to the one without any treatment, but also demonstrates the advantages of offering a safer and more economical treatment strategy. The proposed methodology showcases a significant potential for expediting wound healing by effectively integrating perception, predictive modelling and optimal adaptive control, eliminating the need for intricate mathematical models.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Syndesome Therapeutics for Enhancing Diabetic Wound Healing
    Das, Subhamoy
    Singh, Gunjan
    Majid, Marjan
    Sherman, Michael B.
    Mukhopadhyay, Somshuvra
    Wright, Catherine S.
    Martin, Patricia E.
    Dunn, Andrew K.
    Baker, Aaron B.
    ADVANCED HEALTHCARE MATERIALS, 2016, 5 (17) : 2248 - 2260
  • [2] Optimal Operation of Cryogenic Calorimeters Through Deep Reinforcement Learning
    Angloher G.
    Banik S.
    Benato G.
    Bento A.
    Bertolini A.
    Breier R.
    Bucci C.
    Burkhart J.
    Canonica L.
    D’Addabbo A.
    Di Lorenzo S.
    Einfalt L.
    Erb A.
    v. Feilitzsch F.
    Fichtinger S.
    Fuchs D.
    Garai A.
    Ghete V.M.
    Gorla P.
    Guillaumon P.V.
    Gupta S.
    Hauff D.
    Ješkovský M.
    Jochum J.
    Kaznacheeva M.
    Kinast A.
    Kuckuk S.
    Kluck H.
    Kraus H.
    Langenkämper A.
    Mancuso M.
    Marini L.
    Mauri B.
    Meyer L.
    Mokina V.
    Niedermayer K.
    Olmi M.
    Ortmann T.
    Pagliarone C.
    Pattavina L.
    Petricca F.
    Potzel W.
    Povinec P.
    Pröbst F.
    Pucci F.
    Reindl F.
    Rothe J.
    Schäffner K.
    Schieck J.
    Schönert S.
    Computing and Software for Big Science, 2024, 8 (1)
  • [3] Deep differentiable reinforcement learning and optimal trading
    Jaisson, Thibault
    QUANTITATIVE FINANCE, 2022, 22 (08) : 1429 - 1443
  • [4] Enhancing Noisy Binary Search Efficiency through Deep Reinforcement Learning
    Ma, Rui
    Tao, Yudong
    Khodeiry, Mohamed M.
    Alawa, Karam A.
    Shyu, Mei-Ling
    Lee, Richard K.
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE, IRI, 2023, : 154 - 159
  • [5] Technological Interventions Enhancing Curcumin Bioavailability in Wound-Healing Therapeutics
    Singh, Hemant
    Dhanka, Mukesh
    Yadav, Indu
    Gautam, Sneh
    Bashir, Showkeen Muzamil
    Mishra, Narayan Chandra
    Arora, Taruna
    Hassan, Shabir
    TISSUE ENGINEERING PART B-REVIEWS, 2024, 30 (02) : 230 - 253
  • [6] Enhancing arrhythmia prediction through an adaptive deep reinforcement learning framework for ECG signal analysis
    Serhani, Mohamed Adel
    Ismail, Heba
    El-Kassabi, Hadeel T.
    Al Breiki, Hamda
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 101
  • [7] Enhancing HVAC control systems through transfer learning with deep reinforcement learning agents
    Kadamala, Kevlyn
    Chambers, Des
    Barrett, Enda
    SMART ENERGY, 2024, 13
  • [8] Optimal carbon storage reservoir management through deep reinforcement learning
    Sun, Alexander Y.
    APPLIED ENERGY, 2020, 278
  • [9] Optimal adaptive control of drug dosing using integral reinforcement learning
    Padmanabhan, Regina
    Meskin, Nader
    Haddad, Wassim M.
    MATHEMATICAL BIOSCIENCES, 2019, 309 : 131 - 142
  • [10] Optimal Deep Reinforcement Learning for Intrusion Detection in UAVs
    Praveena, V.
    Vijayaraj, A.
    Chinnasamy, P.
    Ali, Ihsan
    Alroobaea, Roobaea
    Alyahyan, Saleh Yahya
    Raza, Muhammad Ahsan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (02): : 2639 - 2653