Linking the size of hard carbon particles with electrochemical response in sodium ion storage

被引:3
|
作者
Cao, Hailiang [1 ]
Meng, Liang [1 ]
Qin, Chen [1 ]
Han, Zhaohui [1 ]
Yang, Liangtao [2 ]
Dong, Hailiang [1 ]
Hou, Ying [1 ]
Xiao, Chuanyang [1 ]
Wang, Jun [3 ]
Guo, Junjie [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Key Lab Interface Sci & Engn Adv Mat, Minist Educ, Taiyuan 030024, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Sch Innovat & Entrepreneurship, Guangdong Prov Key Lab Energy Mat Elect Power, Shenzhen 518055, Peoples R China
关键词
Hard carbon; Particle size; Sodium-ion batteries; Electrochemical kinetics; Sodium-ion storage mechanism; ANODE MATERIALS; ENERGY-STORAGE; PERFORMANCE; ELECTRODES;
D O I
10.1016/j.apsusc.2024.161126
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbon is considered to be one of the most promising anodes for sodium-ion batteries (SIBs) owing to its high capacity and abundant resources. However, the role of particle size on sodium ion storage is unclear, which leads to low capacity and initial coulombic efficiency (ICE) in practical application. In this work, a series of hard carbons with different particle sizes were prepared by an "up to down" strategy using simple grinding and ballmilling method to investigate the effect of particle size on electrochemical response of sodium ion storage. The particle size of hard carbon has negligible effect on initial specific capacity. However, it has a strong effect on the ICE and rate capability. The ICE reduces as the particle size decreases, but the rate performance in reverse. Moreover, impedance analysis and electrochemical kinetics show huge differences for different particle sizes. Insitu Raman technique was also adopted to further illustrate the sodium ion storage mechanism of hard carbon, and an "adsorption-intercalation-pore filling" mechanism is proposed. This work could provide a new perspective for the design of hard carbon materials with suitable structure for efficient sodium ion storage, helping to develop high performance SIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Electrochemical Insight into the Sodium-Ion Storage Mechanism on a Hard Carbon Anode
    Chen, Xiaoyang
    Fang, Youlong
    Tian, Jiyu
    Lu, Haiyan
    Ai, Xinping
    Yang, Hanxi
    Cao, Yuliang
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (16) : 18914 - 18922
  • [2] Assessing the Reactivity of Hard Carbon Anodes: Linking Material Properties with Electrochemical Response Upon Sodium- and Lithium-Ion Storage
    Moon, Hyein
    Zarrabeitia, Maider
    Frank, Erik
    Bose, Olaf
    Enterria, Marina
    Saurel, Damien
    Hasa, Ivana
    Passerini, Stefano
    BATTERIES & SUPERCAPS, 2021, 4 (06) : 960 - 977
  • [3] Nonignorable Influence of Oxygen in Hard Carbon for Sodium Ion Storage
    Chen, Chen
    Huang, Ying
    Zhu, Yade
    Zhang, Zheng
    Guang, Zhaoxu
    Meng, Zhuoyue
    Liu, Panbo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (03) : 1497 - 1506
  • [4] Hard carbon derived for lignin with robust and low-potential sodium ion storage
    Chen, Minghao
    Luo, Fenqiang
    Liao, Yongchao
    Liu, Chaoran
    Xu, Dawei
    Wang, Zhuang
    Liu, Qian
    Wang, Duo
    Ye, Yueyuan
    Li, Shuirong
    Wang, Dechao
    Zheng, Zhifeng
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 919
  • [5] Zinc-assisted modification of hard carbon for enhanced sodium-ion storage
    Xiao, Haoming
    Wang, Fujian
    Peng, Jun
    Luo, Junhui
    Li, Hongquan
    Wang, Ziheng
    Luo, Xianyou
    Chen, Yong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 978
  • [6] Graphitization Induction Effect of Hard Carbon for Sodium-Ion Storage
    Li, Sishi
    Liu, Jiaqi
    Chen, Yuecong
    Li, Shuaiqi
    Tang, Pei
    Xie, Yandong
    Xie, Shiyin
    Miao, Zhenyuan
    Zhu, Jian
    Yan, Xingbin
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [7] Bridging Microstructure and Sodium-Ion Storage Mechanism in Hard Carbon for Sodium Ion Batteries
    Zeng, Yuejing
    Yang, Jin
    Yang, Huiya
    Yang, Yang
    Zhao, Jinbao
    ACS ENERGY LETTERS, 2024, 9 (03): : 1184 - 1191
  • [8] Hierarchical porous hard carbon derived from rice husks for high-performance sodium ion storage
    Li, Lei
    Sun, Mengfei
    Xu, Zhengzheng
    Wang, Zeng
    Liu, Kun
    Chen, Yingying
    Wang, Zi
    Chen, Hao
    Yang, Hongxun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 661
  • [9] Electrochemical storage mechanism of sodium in carbon materials: A study from soft carbon to hard carbon
    Cheng, Dejian
    Zhou, Xiuqing
    Hu, Huanying
    Li, Zhenghui
    Chen, Jun
    Miao, Lei
    Ye, Xiaoji
    Zhang, Haiyan
    CARBON, 2021, 182 : 758 - 769
  • [10] Revealing sodium ion storage mechanism in hard carbon
    Alvin, Stevanus
    Yoon, Dohyeon
    Chandra, Christian
    Cahyadi, Handi Setiadi
    Park, Jae-Ho
    Chang, Wonyoung
    Chung, Kyung Yoon
    Kim, Jaehoon
    CARBON, 2019, 145 : 67 - 81