Machine learning and physics-driven modelling and simulation of multiphase systems

被引:0
|
作者
Basha, Nausheen [1 ]
Arcucci, Rossella [2 ,5 ]
Angeli, Panagiota [3 ]
Anastasiou, Charitos [3 ]
Abadie, Thomas [4 ]
Casas, Cesar Quilodran [5 ]
Chen, Jianhua [1 ,6 ]
Cheng, Sibo [5 ,12 ,13 ]
Chagot, Loic [3 ]
Galvanin, Federico [3 ]
Heaney, Claire E. [2 ,7 ]
Hossein, Fria [3 ]
Hu, Jinwei [2 ]
Kovalchuk, Nina [4 ]
Kalli, Maria [3 ]
Kahouadji, Lyes [1 ]
Kerhouant, Morgan [1 ]
Lavino, Alessio [1 ]
Liang, Fuyue [1 ]
Nathanael, Konstantia [4 ]
Magri, Luca [8 ,9 ]
Lettieri, Paola [3 ]
Materazzi, Massimiliano [3 ]
Erigo, Matteo [3 ]
Pico, Paula [1 ]
Pain, Christopher C. [2 ,5 ,7 ]
Shams, Mosayeb [1 ]
Simmons, Mark [4 ]
Traverso, Tullio [8 ,9 ]
Valdes, Juan Pablo [1 ]
Wolffs, Zef [10 ,11 ]
Zhu, Kewei [3 ]
Zhuang, Yilin [1 ]
Matar, Omar K. [1 ]
机构
[1] Imperial Coll London, Dept Chem Engn, London, England
[2] Imperial Coll London, Dept Earth Sci & Engn, London, England
[3] UCL, Dept Chem Engn, London, England
[4] Univ Birmingham, Sch Chem Engn, Birmingham, England
[5] Imperial Coll London, Data Sci Inst, Dept Comp, London, England
[6] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing, Peoples R China
[7] Imperial Coll London, Ctr AI Phys Modelling, Imperial X, White City Campus, London, England
[8] Alan Turing Inst, British Lib, 96 Euston Rd, London NW1 2DB, England
[9] Imperial Coll London, Dept Aeronaut, London, England
[10] Univ Amsterdam, Inst Phys, Sci Pk 904, Amsterdam, Netherlands
[11] Nikhef, Sci Pk 105, Amsterdam, Netherlands
[12] CEREA, Ecole Ponts, Ile De France, France
[13] EDF R&D, Ile De France, France
关键词
Machine Learning; Numerical simulations; Multiphase; Multi-fidelity; Microfluidics; Hybrid methods; ACOUSTIC-EMISSION; UNCERTAINTY; FLOW; OPTIMIZATION; BUBBLES; MASS;
D O I
10.1016/j.ijmultiphaseflow.2024.104936
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We highlight the work of a multi-university collaborative programme, PREMIERE (PREdictive Modelling with QuantIfication of UncERtainty for MultiphasE Systems), which is at the intersection of multi-physics and machine learning, aiming to enhance predictive capabilities in complex multiphase flow systems across diverse length and time scales. Our contributions encompass a variety of approaches, including the Design of Experiments for nanoparticle synthesis optimisation, Generalised Latent Assimilation models for drop coalescence prediction, Bayesian regularised artificial neural networks, eXtreme Gradient Boosting for microdroplet formation prediction, and a sub-sampling based adversarial neural network for predicting slug flow behaviour in twophase pipe flows. Additionally, we introduce a generalised latent assimilation technique, Long Short-Term Memory networks for sequence forecasting mixing performance in stirred and static mixers, active learning via Bayesian optimisation to recover coalescence model parameters for high current density electrolysers, Gaussian process regression for drop size distribution predictions for sprays, and acoustic emission signal inversion using gradient boosting machines to characterise particle size distribution in fluidised beds. We also offer perspectives on the development of a shape optimisation framework that leverages the use of a multifidelity multiphase emulator. The results presented have applications in chemical synthesis, microfluidics, product manufacturing, and green hydrogen generation.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Physics-driven neural networks for nonlinear micromechanics
    Xiong, Zhihao
    Yang, Ping
    Zhao, Pengyang
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 273
  • [42] Efficient optimal power flow learning: A deep reinforcement learning with physics-driven critic model
    Sayed, Ahmed
    Al Jaafari, Khaled
    Zhang, Xian
    Zeineldin, Hatem
    Al-Durra, Ahmed
    Wang, Guibin
    Elsaadany, Ehab
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2025, 167
  • [43] Untrained physics-driven aberration retrieval network
    Li, Shuo
    Wang, Bin
    Wang, Xiaofei
    OPTICS LETTERS, 2024, 49 (16) : 4545 - 4548
  • [44] Physics-Guided Adversarial Machine Learning for Aircraft Systems Simulation
    Ben Braiek, Houssem
    Reid, Thomas
    Khomh, Foutse
    IEEE TRANSACTIONS ON RELIABILITY, 2023, 72 (03) : 1161 - 1175
  • [45] Physics-driven machine learning model on temperature and time-dependent deformation in lithium metal and its finite element implementation
    Wen, Jici
    Zou, Qingrong
    Wei, Yujie
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 153
  • [46] Physics-driven machine learning model on temperature and time-dependent deformation in lithium metal and its finite element implementation
    Wen, Jici
    Zou, Qingrong
    Wei, Yujie
    Journal of the Mechanics and Physics of Solids, 2021, 153
  • [47] Deep-Learning-Assisted Physics-Driven MOSFET Current-Voltage Modeling
    Kao, Ming-Yen
    Kam, H.
    Hu, Chenming
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (06) : 974 - 977
  • [48] Tunnel resistivity deep learning inversion method based on physics-driven and signal interpretability
    Liu, Benchao
    Tang, Yuting
    Zhang, Yongheng
    Jiang, Peng
    Zhang, Fengkai
    NEAR SURFACE GEOPHYSICS, 2024, 22 (03) : 372 - 382
  • [49] PIRMedic: Physics-driven Fault Diagnosis for PIR Sensors
    Kashinath, Ashish
    Mohan, Sibin
    Nambi, Akshay
    Marathe, Sumukh
    BUILDSYS'21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, 2021, : 71 - 80
  • [50] Enhancement Method of Image Quality for Lensless Imaging Based on Physics-Driven Unsupervised Learning
    Zuo, Jiale
    Zhang, Mengmeng
    Tang, Ju
    Zhang, Jiawei
    Ren, Zhenbo
    Di, Jianglei
    Zhao, Jianlin
    ACTA OPTICA SINICA, 2024, 44 (16)