Cluster characters for 2-Calabi-Yau Frobenius extriangulated categories

被引:0
作者
Wang, Li [1 ]
Wei, Jiaqun [2 ]
Zhang, Haicheng [3 ]
机构
[1] Anhui Polytech Univ, Sch Math Phys & Finance, Wuhu 241000, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[3] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Extriangulated categories; Cluster algebras; Cluster characters; TRIANGULATED CATEGORIES; ALGEBRAS;
D O I
10.1016/j.jalgebra.2024.07.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the cluster characters for 2-Calabi-Yau Frobenius extriangulated categories with cluster tilting objects. This provides a unified framework of cluster characters in 2-CalabiYau triangulated categories and 2-Calabi-Yau Frobenius exact categories given by Palu and Fu-Keller, respectively. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:645 / 672
页数:28
相关论文
共 38 条
  • [21] CALABI-YAU OBJECTS IN TRIANGULATED CATEGORIES
    Cibils, Claude
    Zhang, Pu
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) : 6501 - 6519
  • [22] LIFTING TO RELATIVE CLUSTER TILTING OBJECTS IN 2n-CALABI-YAU (n+2)-ANGULATED CATEGORIES
    Zhou, Panyue
    Zhou, Xingjia
    [J]. COLLOQUIUM MATHEMATICUM, 2021, 165 (01) : 163 - 169
  • [23] GRADED FROBENIUS CLUSTER CATEGORIES
    Grabowski, Jan E.
    Pressland, Matthew
    [J]. DOCUMENTA MATHEMATICA, 2018, 23 : 49 - 76
  • [24] Cluster characters for cluster categories with infinite-dimensional morphism spaces
    Plamondon, Pierre-Guy
    [J]. ADVANCES IN MATHEMATICS, 2011, 227 (01) : 1 - 39
  • [25] SILTING REDUCTION AND CALABI-YAU REDUCTION OF TRIANGULATED CATEGORIES
    Iyama, Osamu
    Yang, Dong
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (11) : 7861 - 7898
  • [26] q-stability conditions on Calabi-Yau-X categories
    Ikeda, Akishi
    Qiu, Yu
    [J]. COMPOSITIO MATHEMATICA, 2023, 159 (07) : 1347 - 1386
  • [27] On the unipotence of autoequivalences of toric complete intersection Calabi-Yau categories
    Herbst, Manfred
    Walcher, Johannes
    [J]. MATHEMATISCHE ANNALEN, 2012, 353 (03) : 783 - 802
  • [28] Fractional Calabi-Yau categories from Landau-Ginzburg models
    Favero, David
    Kelly, Tyler L.
    [J]. ALGEBRAIC GEOMETRY, 2018, 5 (05): : 596 - 649
  • [29] Exact Calabi-Yau categories and odd-dimensional Lagrangian spheres
    Li, Yin
    [J]. QUANTUM TOPOLOGY, 2024, 15 (01) : 123 - 227
  • [30] SIMPLE-MINDED SYSTEMS AND REDUCTION FOR NEGATIVE CALABI-YAU TRIANGULATED CATEGORIES
    Simoes, Raquel Coelho
    Pauksztello, David
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (04) : 2463 - 2498