Improving thermoelectric performance of α- T3 structure via integration of the Kane-Mele-Hubbard model

被引:6
作者
Abdi, Mona [1 ,2 ]
Astinchap, Bandar [1 ,2 ]
机构
[1] Univ Kurdistan, Fac Sci, Dept Phys, Sanandaj 6617715175, Iran
[2] Univ Kurdistan, Res Ctr Nanotechnol, Sanandaj 6617715175, Kurdistan, Iran
关键词
Kane-Mele model; Seebeck coefficient; Spin-orbit coupling; On-site Coulomb repulsion; CARBON;
D O I
10.1016/j.physb.2024.416563
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Our research examines the electronic thermal conductivity, electrical conductivity, Seebeck coefficient, and figure of merit of the alpha-T3 3 structure utilizing the Green's function approach within the Hamiltonian framework of the Kane-Mele (KM) and Hubbard models. We evaluate how variations in chemical potential, on-site Coulomb repulsion (OSCR) strength, and spin-orbit coupling (SOC) parameters influence these properties. Our findings uncover interesting trends: the presence of a flat band at the energy level of zero within this structure and the gap between the flat band and other bands is observed. The observable rise in SOC results in a clear division within the energy band, demonstrating the notable impact SOC exerts on the electronic structure of the system.Moreover, this strategy displays that this material's thermoelectric properties increase due to temperature, SOC, and OSCR. Also, it was observed that augmenting the alpha parameter can enhance both thermoelectric and thermopower.
引用
收藏
页数:7
相关论文
共 19 条
[1]   Magnetoplasmons for the α-T3 model with filled Landau levels [J].
Balassis, Antonios ;
Dahal, Dipendra ;
Gumbs, Godfrey ;
Iurov, Andrii ;
Huang, Danhong ;
Roslyak, Oleksiy .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (48)
[2]   Magnetotransport properties of the α-T3 model [J].
Biswas, Tutul ;
Ghosh, Tarun Kanti .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (49)
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Klein tunneling in the α-T3 model [J].
Illes, E. ;
Nicol, E. J. .
PHYSICAL REVIEW B, 2017, 95 (23)
[5]   Magnetic properties of the α-T3 model: Magneto-optical conductivity and the Hofstadter butterfly [J].
Illes, E. ;
Nicol, E. J. .
PHYSICAL REVIEW B, 2016, 94 (12)
[6]   Hall quantization and optical conductivity evolution with variable Berry phase in the α-T3 model [J].
Illes, E. ;
Carbotte, J. P. ;
Nicol, E. J. .
PHYSICAL REVIEW B, 2015, 92 (24)
[7]   Valley-polarized magnetoconductivity and particle-hole symmetry breaking in a periodically modulated α-T3 lattice [J].
Islam, S. K. Firoz ;
Dutta, Paramita .
PHYSICAL REVIEW B, 2017, 96 (04)
[8]   Finite-temperature plasmons, damping, and collective behavior in the ?-T3 model [J].
Iurov, Andrii ;
Zhemchuzhna, Liubov ;
Gumbs, Godfrey ;
Huang, Danhong ;
Dahal, Dipendra ;
Abranyos, Yonatan .
PHYSICAL REVIEW B, 2022, 105 (24)
[9]   Graphene: carbon in two dimensions [J].
Katsnelson, Mikhail I. .
MATERIALS TODAY, 2007, 10 (1-2) :20-27
[10]   Frequency-dependent magneto-optical conductivity in the generalized α-T3 model [J].
Kovacs, Aron Daniel ;
David, Gyula ;
Dora, Balazs ;
Cserti, Jozsef .
PHYSICAL REVIEW B, 2017, 95 (03)