Recycling of Spent Graphite from Lithium-Ion Batteries for Aqueous Zn Dual-Ion Batteries

被引:1
|
作者
Cai, Wenqin [1 ,2 ]
Zhang, Linghong [2 ]
Chen, Kai [1 ,2 ]
Xiao, Meng [2 ]
Chen, Ting [3 ]
Dong, Xiaodong [4 ]
Pu, Zewei [4 ]
Wan, Fang [2 ]
Guo, Xiaodong [2 ]
机构
[1] Chengdu Univ, Sch Mech Engn, Chengdu 610106, Peoples R China
[2] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
[3] Chengdu Univ, Inst Adv Study, Chengdu 610106, Peoples R China
[4] Xizang Autonomous Reg Energy Res Demonstrat Ctr, Lasa 850000, Peoples R China
基金
中国国家自然科学基金;
关键词
recycling; spent graphite; reduced grapheneoxide; large layer spacing; aqueous Zn dual-ionbatteries; INTERCALATION; GRAPHENE;
D O I
10.1021/acsami.4c11552
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As lithium-ion batteries (LIBs) become more widespread, the number of spent LIBs gradually increases. Until now, recycling of spent LIBs has mainly concentrated on high-value cathodes, but the anode graphite has not yet attracted wide attention. In this work, spent graphite from LIBs was oxidized to graphene oxide and then thermally reduced to reduced graphene oxide (RGO), which serves as the cathode of aqueous Zn dual-ion batteries (ZDIBs). The thermal reduction process enables RGO with a large layer spacing and porous structure, which increase the anion insertion sites and transfer kinetics. As a result, the corresponding battery exhibits a high specific capacity of 96.82 mAh g(-1) at 1 A g(-1), superior rate capability, and a high capacity retention rate of 80% after 2000 cycles. Moreover, RGO gradually transforms into a long-range disordered structure during the cycling process, which provides more transport routes and active sites for anion insertion and thus leads to the increase of capacity. This work combines the recycling of spent graphite with aqueous ZDIBs, realizing the high-value use of spent graphite.
引用
收藏
页码:50897 / 50904
页数:8
相关论文
共 50 条
  • [1] Graphite Recycling from Spent Lithium-Ion Batteries
    Rothermel, Sergej
    Evertz, Marco
    Kasnatscheew, Johannes
    Qi, Xin
    Gruetzke, Martin
    Winter, Martin
    Nowak, Sascha
    CHEMSUSCHEM, 2016, 9 (24) : 3473 - 3484
  • [2] Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives
    Qiao, Yu
    Zhao, Huaping
    Shen, Yonglong
    Li, Liqiang
    Rao, Zhonghao
    Shao, Guosheng
    Lei, Yong
    ECOMAT, 2023, 5 (04)
  • [3] Progress on recycling graphite cathode from spent lithium-ion batteries
    Ding Y.
    Shi Z.
    Zhang S.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (05): : 949 - 962
  • [4] Recycling of spent lithium-ion batteries in view of graphite recovery: A review
    Shang, Zhen
    Yu, Wenhao
    Zhou, Jiahui
    Zhou, Xia
    Zeng, Zhiyuan
    Tursun, Rabigul
    Liu, Xuegang
    Xu, Shengming
    ETRANSPORTATION, 2024, 20
  • [5] Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries
    Wang, Li
    Wang, Chao
    Zhang, Jing-Yi
    Qiu, Jia-Cheng
    Fu, Xu-Wang
    Zhang, Zi-Rui
    Feng, Jian-Min
    Dong, Lei
    Long, Cong-Lai
    Li, De-Jun
    Wang, Xiao-Wei
    Zhang, Bao
    Zhang, Jia-Feng
    Zhao, Rui-Rui
    RARE METALS, 2024, 43 (05) : 2161 - 2171
  • [6] Advances and challenges in anode graphite recycling from spent lithium-ion batteries
    Niu, Bo
    Xiao, Jiefeng
    Xu, Zhenming
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 439
  • [7] Recycling and Reusing of Graphite from Retired Lithium-ion Batteries: A Review
    Tian, Honghong
    Graczyk-Zajac, Magdalena
    Kessler, Alois
    Weidenkaff, Anke
    Riedel, Ralf
    ADVANCED MATERIALS, 2024, 36 (13)
  • [8] Recovery of Graphite from Spent Lithium-Ion Batteries
    Badenhorst, Charlotte
    Kuzniarska-Biernacka, Iwona
    Guedes, Alexandra
    Mousa, Elsayed
    Ramos, Violeta
    Rollinson, Gavin
    Ye, Guozhu
    Valentim, Bruno
    RECYCLING, 2023, 8 (05)
  • [9] Recycling Chain for Spent Lithium-Ion Batteries
    Werner, Denis
    Peuker, Urs Alexander
    Muetze, Thomas
    METALS, 2020, 10 (03)
  • [10] Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries
    Li Wang
    Chao Wang
    Jing-Yi Zhang
    Jia-Cheng Qiu
    Xu-Wang Fu
    Zi-Rui Zhang
    Jian-Min Feng
    Lei Dong
    Cong-Lai Long
    De-Jun Li
    Xiao-Wei Wang
    Bao Zhang
    Jia-Feng Zhang
    Rui-Rui Zhao
    Rare Metals, 2024, 43 : 2161 - 2171