A fault diagnosis method with AT-ICNN based on a hybrid attention mechanism and improved convolutional layers☆

被引:8
|
作者
Li, Xueyi [1 ,3 ]
Xiao, Shuquan [1 ]
Zhang, Feibin [2 ]
Huang, Jinfeng
Xie, Zhijie [1 ]
Kong, Xiangwei [3 ,4 ]
机构
[1] Northeast Forestry Univ, Coll Mech & Elect Engn, Harbin 150040, Peoples R China
[2] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[3] Northeastern Univ, Key Lab Vibrat & Control Aeroprop Syst, Minist Educ, Shenyang 110819, Peoples R China
[4] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Fault diagnosis; Hybrid attention mechanism; Improved convolutional layers;
D O I
10.1016/j.apacoust.2024.110191
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Fault diagnosis is crucial for mechanical systems, with early diagnosis of bearings playing a key role in ensuring the overall safety and smooth operation of the mechanical system. However, in real industrial environments, traditional diagnostic methods limit the extraction of fault signals from rotating machinery. This study aims to improve the fault diagnosis method for critical mechanical components and proposes a novel deep learning model, the Attention Improved CNN (AT-ICNN) fault diagnosis method. The method combines Convolutional Neural Network (CNN) and attention mechanism to extract key fault feature information from signals, enhancing the model's ability to highlight fault features and capture global information. This improves the accuracy of fault type identification. The AT-ICNN model enhances traditional CNN models by introducing Improved Convolutional (IMConv) and integrating a hybrid attention mechanism to effectively extract relevant fault information. Experimental results demonstrate superior diagnostic performance of AT-ICNN on the CWRU bearing dataset and laboratory bearing dataset, with accuracy rates of 98.12% and 98.72%, respectively. This represents about 9% improvement over baseline models and other advanced methods. In-depth analysis of experimental results validates the significant advantages of AT-ICNN in the field of fault diagnosis for critical mechanical components.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Lightweight Gear Fault Diagnosis Method Based on Attention Mechanism and Multilayer Fusion Network
    Wang, Manyi
    Yang, Yunxin
    Wei, Liuxuan
    Li, Yasong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [32] A Novel Rolling Bearing Fault Diagnosis Method Based on BLS and CNN with Attention Mechanism
    Wang, Xiaojia
    Hua, Tong
    Xu, Sheng
    Zhao, Xibin
    MACHINES, 2023, 11 (02)
  • [33] Gearbox fault diagnosis method based on lightweight channel attention mechanism and transfer learning
    Xuemin Cheng
    Shuihai Dou
    Yanping Du
    Zhaohua Wang
    Scientific Reports, 14
  • [34] Bearing Fault Detection Based on Convolutional Self-Attention Mechanism
    Ye, Ruida
    Wang, Weijie
    Ren, Yuan
    Zhang, Keming
    PROCEEDINGS OF 2020 IEEE 2ND INTERNATIONAL CONFERENCE ON CIVIL AVIATION SAFETY AND INFORMATION TECHNOLOGY (ICCASIT), 2020, : 869 - 873
  • [35] Improved convolutional capsule network method for rolling bearing fault diagnosis
    Zhao X.-Q.
    Chai J.-X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2024, 37 (05): : 885 - 895
  • [36] Intelligent Fault Diagnosis Method through ACCC-Based Improved Convolutional Neural Network
    Zhang, Chao
    Huang, Qixuan
    Yang, Ke
    Zhang, Chaoyi
    ACTUATORS, 2023, 12 (04)
  • [37] Motor Fault Diagnosis Method Based on an Improved One-Dimensional Convolutional Neural Network
    Ma L.-L.
    Liu X.-R.
    Shen W.
    Wang J.-Z.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2020, 40 (10): : 1088 - 1093
  • [38] A Fault Diagnosis Method of Rolling Bearing Based on Improved Recurrence Plot and Convolutional Neural Network
    Liu, Xiaoping
    Xia, Lijian
    Shi, Jian
    Zhang, Lijie
    Bai, Linying
    Wang, Shaoping
    IEEE SENSORS JOURNAL, 2023, 23 (10) : 10767 - 10775
  • [39] Improved Convolutional Neural Network Based on Multi-head Attention Mechanism for Industrial Process Fault Classification
    Cui, Wenzhi
    Deng, Xiaogang
    Zhang, Zheng
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 918 - 922
  • [40] An Incipient Fault Diagnosis Method Based on Complex Convolutional Self-Attention Autoencoder for Analog Circuits
    Gao, Tianyu
    Yang, Jingli
    Jiang, Shouda
    Li, Ye
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (08) : 9727 - 9736