Multi-population genetic algorithm with crowding-based local search for fuzzy multi-objective supply chain configuration

被引:0
|
作者
Zhang, Xin [1 ]
Sun, Shaopeng [1 ]
Yao, Jian [1 ]
Fang, Wei [1 ]
Qian, Pengjiang [1 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Genetic algorithm (GA); Multiple populations for multiple objectives (MPMOs); (MPMOs); Fuzzy multi-objective supply chain configuration; Local search; OPTIMIZATION; MANAGEMENT; INVENTORY;
D O I
10.1016/j.swevo.2024.101698
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Supply chain configuration is often fuzzy and involves multiple objectives in real-world scenarios, but existing researches lack the exploration in the fuzzy aspect. Therefore, this paper establishes a fuzzy multi-objective supply chain configuration problem model to minimize the lead time and product cost oriented towards real supply chain environments. To solve the fuzzy problem, the theories of membership and closeness degree in fuzzy mathematics are adopted, and a multi-population genetic algorithm (MPGA) with crowding-based local search method is proposed. The MPGA algorithm uses two populations for optimizing the two objectives separately and effectively, and is characterized by three main innovative aspects. Firstly, a radical-and-radial selection operator is designed to balance the convergence speed and diversity of population. In the early stage of the algorithm, two populations are both optimized towards the ideal knee point, and then are separately optimized towards the two ends of the Pareto front (PF). Secondly, an elitist crossover operator is devised to promote information exchange within two populations. Thirdly, a crowding-based local search is proposed to speed up convergence by improving the crowded solutions, and to enhance diversity by obtaining new solutions around the uncrowded ones. Comprehensive experiments are tested on a fuzzy dataset with different sizes, and the integral of the hypervolume of PF is used for the evaluation of the fuzzy PF. The results show that MPGA achieves the best performance over other comparative algorithms, especially on maximum spread metric, outperforming all others by an average of 39 % across all test instances.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A Multi-population Hybrid Algorithm to Solve Multi-objective Remote Switches Placement Problem in Distribution Networks
    Alves H.N.
    Journal of Control, Automation and Electrical Systems, 2015, 26 (05) : 545 - 555
  • [42] Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem
    Shao, Weishi
    Shao, Zhongshi
    Pi, Dechang
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183
  • [43] A Multi-Population Based Evolutionary Algorithm for Many-Objective Recommendations
    Zhang, Lei
    Zhang, Huabin
    Chen, Zihao
    Liu, Sibo
    Yang, Haipeng
    Zhao, Hongke
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (02): : 1969 - 1982
  • [44] A multi-population genetic algorithm for transportation scheduling
    Zegordi, S. H.
    Nia, M. A. Beheshti
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2009, 45 (06) : 946 - 959
  • [45] A Two-Stage Green Supply Chain Network with a Carbon Emission Price by a Multi-objective Interior Search Algorithm
    Torabi, N.
    Tavakkoli-Moghaddam, R.
    Najafi, E.
    Hosseinzadeh-Lotfi, F.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2019, 32 (06): : 828 - 834
  • [46] A Multi-objective Sustainable Medicine Supply Chain Network Design Using a Novel Hybrid Multi-objective Metaheuristic Algorithm
    Goodarzian, F.
    Hosseini-Nasab, H.
    Fakhrzad, M. B.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (10): : 1986 - 1995
  • [47] A Regional Local Search and Memory based Evolutionary Algorithm for Dynamic Multi-objective Optimization
    Li, Sanyi
    Wang, Yanfeng
    Yue, Weichao
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 1692 - 1697
  • [48] A Multi-Objective Genetic Algorithm Based on Fitting and Interpolation
    Han, Chuang
    Wang, Ling
    Zhang, Zhaolin
    Xie, Jian
    Xing, Zijian
    IEEE ACCESS, 2018, 6 : 22920 - 22929
  • [49] A meta-heuristic-based algorithm for designing multi-objective multi-echelon supply chain network
    Mohammed, Awsan
    Al-shaibani, Maged S.
    Duffuaa, Salih O.
    APPLIED SOFT COMPUTING, 2023, 147
  • [50] Multi-Objective Memetic Algorithms with Tree-Based Genetic Programming and Local Search for Symbolic Regression
    Liang, Jiayu
    Xue, Yu
    NEURAL PROCESSING LETTERS, 2021, 53 (03) : 2197 - 2219