Multi-population genetic algorithm with crowding-based local search for fuzzy multi-objective supply chain configuration

被引:0
|
作者
Zhang, Xin [1 ]
Sun, Shaopeng [1 ]
Yao, Jian [1 ]
Fang, Wei [1 ]
Qian, Pengjiang [1 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Genetic algorithm (GA); Multiple populations for multiple objectives (MPMOs); (MPMOs); Fuzzy multi-objective supply chain configuration; Local search; OPTIMIZATION; MANAGEMENT; INVENTORY;
D O I
10.1016/j.swevo.2024.101698
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Supply chain configuration is often fuzzy and involves multiple objectives in real-world scenarios, but existing researches lack the exploration in the fuzzy aspect. Therefore, this paper establishes a fuzzy multi-objective supply chain configuration problem model to minimize the lead time and product cost oriented towards real supply chain environments. To solve the fuzzy problem, the theories of membership and closeness degree in fuzzy mathematics are adopted, and a multi-population genetic algorithm (MPGA) with crowding-based local search method is proposed. The MPGA algorithm uses two populations for optimizing the two objectives separately and effectively, and is characterized by three main innovative aspects. Firstly, a radical-and-radial selection operator is designed to balance the convergence speed and diversity of population. In the early stage of the algorithm, two populations are both optimized towards the ideal knee point, and then are separately optimized towards the two ends of the Pareto front (PF). Secondly, an elitist crossover operator is devised to promote information exchange within two populations. Thirdly, a crowding-based local search is proposed to speed up convergence by improving the crowded solutions, and to enhance diversity by obtaining new solutions around the uncrowded ones. Comprehensive experiments are tested on a fuzzy dataset with different sizes, and the integral of the hypervolume of PF is used for the evaluation of the fuzzy PF. The results show that MPGA achieves the best performance over other comparative algorithms, especially on maximum spread metric, outperforming all others by an average of 39 % across all test instances.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Hypervolume-based multi-objective local search
    Basseur, Matthieu
    Zeng, Rong-Qiang
    Hao, Jin-Kao
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (08) : 1917 - 1929
  • [32] The fuzzy multi-objective distribution planner for a green meat supply chain
    Mohammed, Ahmed
    Wang, Qian
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2017, 184 : 47 - 58
  • [33] A Multi-Population Multi-Objective Evolutionary Algorithm Based on the Contribution of Decision Variables to Objectives for Large-Scale Multi/Many-Objective Optimization
    Xu, Ying
    Xu, Chong
    Zhang, Huan
    Huang, Lei
    Liu, Yiping
    Nojima, Yusuke
    Zeng, Xiangxiang
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (11) : 6998 - 7007
  • [34] A Broyden-based algorithm for multi-objective local-search optimization
    Botello-Aceves, Salvador
    Ivvan Valdez, S.
    Hernandez-Aguirre, Arturo
    INFORMATION SCIENCES, 2022, 594 : 264 - 285
  • [35] Multi-Objective Memetic Search Algorithm for Multi-Objective Permutation Flow Shop Scheduling Problem
    Li, Xiangtao
    Ma, Shijing
    IEEE ACCESS, 2016, 4 : 2154 - 2165
  • [36] A multi-population, multi-objective memetic algorithm for energy-efficient job-shop scheduling with deteriorating machines
    Abedi, Mehdi
    Chiong, Raymond
    Noman, Nasimul
    Zhang, Rui
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 157
  • [37] An Improved Multi-Objective Genetic Algorithm for Solving Multi-objective Problems
    Hsieh, Sheng-Ta
    Chiu, Shih-Yuan
    Yen, Shi-Jim
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (05): : 1933 - 1941
  • [38] Multi-objective multi-population biased random-key genetic algorithm for the 3-D container loading problem
    Zheng, Jia-Nian
    Chien, Chen-Fu
    Gen, Mitsuo
    COMPUTERS & INDUSTRIAL ENGINEERING, 2015, 89 : 80 - 87
  • [39] Hypervolume-based multi-objective local search
    Matthieu Basseur
    Rong-Qiang Zeng
    Jin-Kao Hao
    Neural Computing and Applications, 2012, 21 : 1917 - 1929
  • [40] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974