Genome-wide identification of Glycyrrhiza uralensis Fisch. MAPK gene family and expression analysis under salt stress relieved by Bacillus subtilis

被引:0
|
作者
Gao, Pengchao [1 ]
Xiao, Jiancai [1 ]
Guo, Wanying [1 ]
Fan, Rui [1 ]
Zhang, Yan [1 ]
Nan, Tiegui [1 ]
机构
[1] China Acad Chinese Med Sci, Natl Resource Ctr Chinese Mat Med, State Key Lab Qual Ensurance & Sustainable Use Dao, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Glycyrrhiza uralensis Fisch; salt stress; MAPK; Bacillus subtilis; subcellular localization; KINASE; CASCADES; PATHWAYS; SIGNALS; PLANTS;
D O I
10.3389/fgene.2024.1442277
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction: Research on Glycyrrhiza uralensis, a nonhalophyte that thrives in saline-alkaline soil and a traditional Chinese medicinal component, is focused on improving its ability to tolerate salt stress to increase its productivity and preserve its "Dao-di" characteristics. Furthermore, the inoculation of bioagents such as Bacillus subtilis to increase plant responses to abiotic stressors is currently a mainstream strategy. Mitogen-activated protein kinase (MAPK), a highly conserved protein kinase, plays a significant role in plant responses to various abiotic stress pathways. Methods: This investigation involved the identification of 21 members of the GuMAPK family from the genome of G. uralensis, with an analysis of their protein conserved domains, gene structures, evolutionary relationships, and phosphorylation sites using bioinformatics tools. Results: Systematic evolutionary analysis of the 21 GuMAPKs classified them into four distinct subgroups, revealing significant differences in gene structure and exon numbers. Collinearity analysis highlighted the crucial role of segmental duplication in expanding the GuMAPK gene family, which is particularly evident in G. uralensis and shows a close phylogenetic relationship with Arabidopsis thaliana, tomato, and cucumber. Additionally, the identification of phosphorylation sites suggests a strong correlation between GuMAPK and various physiological processes, including hormonal responses, stress resistance, and growth and development. Protein interaction analysis further supported the role of GuMAPK proteins in regulating essential downstream genes. Through examination of transcriptome expression patterns, GuMAPK16-2 emerged as a prospective pivotal regulatory factor in the context of salt stress and B. subtilis inoculation, a finding supported by its subcellular localization within the nucleus. Discussion: These discoveries offer compelling evidence for the involvement of GuMAPK in the salt stress response and for the exploration of the mechanisms underlying B. subtilis' enhancement of salt tolerance in G. uralensis.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Genome-wide identification and expression analysis of TPP gene family under salt stress in peanut (Arachis hypogaea L.)
    Zhang, Yanfeng
    Cao, Minxuan
    Li, Qiuzhi
    Yu, Fagang
    PLOS ONE, 2024, 19 (07):
  • [32] WRKY gene family of Licorice (Glycyrrhiza uralensis): identification and expression analysis in response to abiotic stress
    Li, Rui
    Gao, Jing
    Wang, Nan
    Yan, Yonggang
    Zhang, Gang
    Yan, Jiakun
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2023, 37 (01)
  • [33] Non-targeted metabolomic analysis of the variations in the metabolites of two genotypes of Glycyrrhiza uralensis Fisch. under drought stress
    Zhang, Qianqian
    Li, Bingzhen
    Chen, Qing
    Su, Youla
    Wang, Ruijuan
    Liu, Zhihe
    Chen, Guilin
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 176
  • [34] Genome-Wide Identification of the LAC Gene Family and Its Expression Analysis Under Stress in Brassica napus
    Ping, Xiaoke
    Wang, Tengyue
    Lin, Na
    Di, Feifei
    Li, Yangyang
    Jian, Hongju
    Wang, Hao
    Lu, Kun
    Li, Jiana
    Xu, Xinfu
    Liu, Liezhao
    MOLECULES, 2019, 24 (10):
  • [35] Bacillus cereus G2 alleviate salt stress in Glycyrrhiza uralensis Fisch. by balancing the downstream branches of phenylpropanoids and activating flavonoid biosynthesis
    Xiao, Xiang
    Lang, Duoyong
    Yong, Jingjiao
    Zhang, Xinhui
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 273
  • [36] Genome-Wide Identification and Expression Analysis of ADK Gene Family Members in Cotton under Abiotic Stress
    Huang, Peijun
    Lin, Ziwei
    Zhang, Yuzhi
    Gao, Yu
    Tan, Songjuan
    Wang, Shuai
    Cao, Xiaoyu
    Shi, Hongyan
    Sun, Chao
    Bai, Jiangping
    Ma, Xiongfeng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (14)
  • [37] Genome-Wide Identification of ALDH Gene Family under Salt and Drought Stress in Phaseolus vulgaris
    Eren, Abdil Hakan
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024,
  • [38] Genome-Wide Identification of SMXL Gene Family in Soybean and Expression Analysis of GmSMXLs under Shade Stress
    Zhang, Han
    Wang, Li
    Gao, Yang
    Guo, Yukai
    Zheng, Naiwen
    Xu, Xiangyao
    Xu, Mei
    Wang, Wenyan
    Liu, Chunyan
    Liu, Weiguo
    Yang, Wenyu
    PLANTS-BASEL, 2022, 11 (18):
  • [39] Genome-Wide Identification of the Peanut ASR Gene Family and Its Expression Analysis under Abiotic Stress
    Li, Jiaxing
    Ma, Mingxia
    Zeng, Tuo
    Gu, Lei
    Zhu, Bin
    Wang, Hongcheng
    Du, Xuye
    Zhu, Xiu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (20)
  • [40] Genome-Wide Identification of the Nramp Gene Family in Spirodela polyrhiza and Expression Analysis under Cadmium Stress
    Chen, Yan
    Zhao, Xuyao
    Li, Gaojie
    Kumar, Sunjeet
    Sun, Zuoliang
    Li, Yixian
    Guo, Wenjun
    Yang, Jingjing
    Hou, Hongwei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (12)