Towards replacing precipitation ensemble predictions systems using machine learning

被引:0
|
作者
Brecht, Ruediger [1 ]
Bihlo, Alex [2 ]
机构
[1] Univ Hamburg, Dept Math, Hamburg, Germany
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF, Canada
来源
ATMOSPHERIC SCIENCE LETTERS | 2024年 / 25卷 / 11期
基金
加拿大自然科学与工程研究理事会;
关键词
ensemble weather prediction; machine learning; precipitation; tools and methods;
D O I
10.1002/asl.1262
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Forecasting precipitation accurately poses significant challenges due to various factors affecting its distribution and intensity, including but not limited to subgrid variability. Although higher resolution simulations are often considered to improve precipitation forecasts, it is crucial to note that simply increasing resolution may not suffice without appropriate adjustments to parameterization schemes or tuning. Traditionally, ensembles of simulations are used to generate uncertainty predictions associated with precipitation forecasts, but this approach can be computationally intensive. As an alternative, there is a growing trend towards leveraging neural networks for precipitation prediction, which offers potential computational advantages. We propose a new approach to generating ensemble weather predictions for high-resolution precipitation without requiring high-resolution training data. The method uses generative adversarial networks to learn the complex patterns of precipitation and produce diverse and realistic precipitation fields, allowing to generate realistic precipitation ensemble members using only the available control forecast. We demonstrate the feasibility of generating realistic precipitation ensemble members on unseen higher resolutions. We use evaluation metrics such as RMSE, CRPS, rank histogram and ROC curves to demonstrate that our generated ensemble is almost identical to the ECMWF IFS ensemble, on which our model was trained on. We propose a novel method for generating precipitation ensemble members from deterministic weather forecasts. Prediction is done using a generative adversarial network in an image-to-image style. The neural networks is trained on low-resolution data but can be applied on unseen higher resolution data. image
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Precipitation prediction in Bangladesh using machine learning approaches
    Islam, Md. Ariful
    Shampa, Mosa. Tania Alim
    INTERNATIONAL JOURNAL OF HYDROLOGY SCIENCE AND TECHNOLOGY, 2024, 18 (01) : 23 - 56
  • [32] Wave overtopping predictions using an advanced machine learning technique
    den Bieman, Joost P.
    van Gent, Marcel R. A.
    van den Boogaard, Henk F. P.
    COASTAL ENGINEERING, 2021, 166
  • [33] Spinal Cord Injury AIS Predictions Using Machine Learning
    Kapoor, Dhruv
    Xu, Clark
    ENEURO, 2023, 10 (01)
  • [34] Corporate Default Predictions Using Machine Learning: Literature Review
    Kim, Hyeongjun
    Cho, Hoon
    Ryu, Doojin
    SUSTAINABILITY, 2020, 12 (16)
  • [35] Advancing High School Dropout Predictions Using Machine Learning
    Alam, Anika
    Bowden, A. Brooks
    ARTIFICIAL INTELLIGENCE IN EDUCATION: POSTERS AND LATE BREAKING RESULTS, WORKSHOPS AND TUTORIALS, INDUSTRY AND INNOVATION TRACKS, PRACTITIONERS, DOCTORAL CONSORTIUM AND BLUE SKY, AIED 2024, 2024, 2151 : 334 - 341
  • [36] Data Center Predictions using MATLAB Machine Learning Toolbox
    Levy, Moises
    Raviv, Daniel
    Baker, Justin
    2019 IEEE 9TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2019, : 458 - 464
  • [37] Dissolved oxygen concentration predictions for running waters with using hybrid machine learning techniques
    Dehghani, Reza
    Torabi Poudeh, Hassan
    Izadi, Zohreh
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (02) : 2599 - 2613
  • [38] Bond defaults in China: Using machine learning to make predictions
    Cui, Bei
    Ge, Li
    Grecov, Priscila
    INTERNATIONAL REVIEW OF FINANCE, 2025, 25 (01)
  • [39] Towards Explainable Machine Learning for Bank Churn Prediction Using Data Balancing and Ensemble-Based Methods
    Tekouabou, Stephane C. K.
    Gherghina, Stefan Cristian
    Toulni, Hamza
    Mata, Pedro Neves
    Martins, Jose Moleiro
    MATHEMATICS, 2022, 10 (14)
  • [40] Towards quantifying the uncertainty in in silico predictions using Bayesian learning
    Allen, Timothy E. H.
    Middleton, Alistair M.
    Goodman, Jonathan M.
    Russell, Paul J.
    Kukic, Predrag
    Gutsell, Steve
    COMPUTATIONAL TOXICOLOGY, 2022, 23