Defining the Plasticity of Transcription Factor Binding Sites by Deconstructing DNA Consensus Sequences: The PhoP-Binding Sites among Gamma/Enterobacteria

被引:32
|
作者
Harari, Oscar [1 ,2 ]
Park, Sun-Yang [3 ]
Huang, Henry [3 ]
Groisman, Eduardo A. [3 ,4 ]
Zwir, Igor [1 ,3 ,4 ]
机构
[1] Univ Granada, Dept Comp Sci & Artificial Intelligence, Granada, Spain
[2] Washington Univ, Sch Med, Dept Psychiat, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Howard Hughes Med Inst, St Louis, MO 63110 USA
关键词
FUZZY-LOGIC CONTROLLERS; ESCHERICHIA-COLI; MOLECULAR CHARACTERIZATION; SALMONELLA-TYPHIMURIUM; REGULATORY NETWORK; PROTEIN; DISCOVERY; GENOME; GENES; IDENTIFICATION;
D O I
10.1371/journal.pcbi.1000862
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression. The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg2+ homeostasis in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs) using a machine learning method inspired by the "Divide & Conquer'' strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the divergence may be attributed to the fast evolution of orthologous target genes and/or the promoter architectures resulting from the interaction of those binding sites with the RNA polymerase.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] AliBiMotif: Integrating alignment and biclustering to unravel Transcription Factor Binding Sites in DNA sequences
    Goncalves, Joana P.
    Moreau, Yves
    Madeira, Sara C.
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2012, 6 (02) : 196 - 215
  • [2] Pseudocounts for transcription factor binding sites
    Nishida, Keishin
    Frith, Martin C.
    Nakai, Kenta
    NUCLEIC ACIDS RESEARCH, 2009, 37 (03) : 939 - 944
  • [3] A subspace method for the detection of transcription factor binding sites
    Pairo, Erola
    Maynou, Joan
    Marco, Santiago
    Perera, Alexandre
    BIOINFORMATICS, 2012, 28 (10) : 1328 - 1335
  • [4] Transcription factor binding sites are highly enriched within microRNA precursor sequences
    Piriyapongsa, Jittima
    Jordan, I. King
    Conley, Andrew B.
    Ronan, Tom
    Smalheiser, Neil R.
    BIOLOGY DIRECT, 2011, 6
  • [5] Assessing phylogenetic motif models for predicting transcription factor binding sites
    Hawkins, John
    Grant, Charles
    Noble, William Stafford
    Bailey, Timothy L.
    BIOINFORMATICS, 2009, 25 (12) : I339 - I347
  • [6] Recurrent Neural Network for Predicting Transcription Factor Binding Sites
    Shen, Zhen
    Bao, Wenzheng
    Huang, De-Shuang
    SCIENTIFIC REPORTS, 2018, 8
  • [7] Transcription factor binding sites detection by using alignment-based approach
    Mandevar, Ghasem
    Sadeghi, Mehdi
    Nowzari-Dalini, Abbas
    JOURNAL OF THEORETICAL BIOLOGY, 2012, 304 : 96 - 102
  • [8] ML-Consensus: A General Consensus Model for Variable-Length Transcription Factor Binding Sites
    Quader, Saad
    Snyder, Nathan
    Su, Kevin
    Mochan, Ericka
    Huang, Chun-Hsi
    EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, 2011, 6623 : 25 - +
  • [9] TFBSshape: a motif database for DNA shape features of transcription factor binding sites
    Yang, Lin
    Zhou, Tianyin
    Dror, Iris
    Mathelier, Anthony
    Wasserman, Wyeth W.
    Gordan, Raluca
    Rohs, Remo
    NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) : D148 - D155
  • [10] Use of structural DNA properties for the prediction of transcription-factor binding sites in Escherichia coli
    Meysman, Pieter
    Thanh Hai Dang
    Laukens, Kris
    De Smet, Riet
    Wu, Yan
    Marchal, Kathleen
    Engelen, Kristof
    NUCLEIC ACIDS RESEARCH, 2011, 39 (02) : e6