Human XPR1 structures reveal phosphate export mechanism

被引:9
|
作者
Yan, Rui [1 ,2 ]
Chen, Huiwen [1 ,3 ]
Liu, Chuanyu [1 ,4 ]
Zhao, Jun [5 ]
Wu, Di [1 ,4 ]
Jiang, Juquan [3 ]
Gong, Jianke [2 ]
Jiang, Daohua [1 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Lab Soft Matter Phys, Beijing, Peoples R China
[2] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Key Lab Mol Biophys MOE, Wuhan, Peoples R China
[3] Northeast Agr Univ, Coll Life Sci, Dept Microbiol & Biotechnol, Harbin, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Peking Univ, Shandong Lab Adv Agr Sci Weifang, Inst Adv Agr Sci, Weifang, Peoples R China
基金
中国国家自然科学基金;
关键词
CELL-SURFACE RECEPTOR; LEUKEMIA VIRUSES; CRYO-EM; HOMEOSTASIS; DOMAIN; GENE; EXPRESSION; MUTATIONS; CHANNEL;
D O I
10.1038/s41586-024-07852-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inorganic phosphate (Pi) is a fundamental macronutrient for all living organisms, the homeostasis of which is critical for numerous biological activities(1-3). As the only known human Pi exporter to date, XPR1 has an indispensable role in cellular Pi homeostasis(4,5). Dysfunction of XPR1 is associated with neurodegenerative disease(6-8). However, the mechanisms underpinning XPR1-mediated Pi efflux and regulation by the intracellular inositol polyphosphate (InsPP) sensor SPX domain remain poorly understood. Here we present cryo-electron microscopy structures of human XPR1 in Pi-bound closed, open and InsP(6)-bound forms, revealing the structural basis for XPR1 gating and regulation by InsPPs. XPR1 consists of an N-terminal SPX domain, a dimer-formation core domain and a Pi transport domain. Within the transport domain, three basic clusters are responsible for Pi binding and transport, and a conserved W573 acts as a molecular switch for gating. In addition, the SPX domain binds to InsP(6) and facilitates Pi efflux by liberating the C-terminal loop that limits Pi entry. This study provides a conceptual framework for the mechanistic understanding of Pi homeostasis by XPR1 homologues in fungi, plants and animals.
引用
收藏
页码:960 / 967
页数:24
相关论文
共 50 条
  • [41] Structures reveal a key mechanism of WAVE regulatory complex activation by Rac1 GTPase
    Ding, Bojian
    Yang, Sheng
    Schaks, Matthias
    Liu, Yijun
    Brown, Abbigale J.
    Rottner, Klemens
    Chowdhury, Saikat
    Chen, Baoyu
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [42] The genetic polymorphisms of XPR1 and SCL34A3 are associated with Fanconi syndrome in Chinese patients of tumor-induced osteomalacia
    Jiang, Y.
    Li, X.
    Feng, J.
    Li, M.
    Wang, O.
    Xing, X. -P.
    Xia, W. -B.
    JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2021, 44 (04) : 773 - 780
  • [43] IDH1 mutant structures reveal a mechanism of dominant inhibition
    Zhao, Shimin
    Guan, Kun-Liang
    CELL RESEARCH, 2010, 20 (12) : 1279 - 1281
  • [44] Structures of human dynein in complex with the lissencephaly 1 protein, LIS1
    Reimer, Janice M.
    DeSantis, Morgan E.
    Leschziner, Andres E.
    Reck-Peterson, Samara L.
    ELIFE, 2023, 12
  • [45] Phosphate dysregulation via the XPR1-KIDINS220 protein complex is a therapeutic vulnerability in ovarian cancer
    Bondeson, Daniel P.
    Paolella, Brenton R.
    Asfaw, Adhana
    Rothberg, Michael, V
    Skipper, Thomas A.
    Langan, Carly
    Mesa, Gabriel
    Gonzalez, Alfredo
    Surface, Lauren E.
    Ito, Kentaro
    Kazachkova, Mariya
    Colgan, William N.
    Warren, Allison
    Dempster, Joshua M.
    Krill-Burger, John M.
    Ericsson, Maria
    Tang, Andrew A.
    Fung, Iris
    Chambers, Emily S.
    Abdusamad, Mai
    Dumont, Nancy
    Doench, John G.
    Piccioni, Federica
    Root, David E.
    Boehm, Jesse
    Hahn, William C.
    Mannstadt, Michael
    McFarland, James M.
    Vazquez, Francisca
    Golub, Todd R.
    NATURE CANCER, 2022, 3 (6) : 681 - 695
  • [46] Human keratin 1/10-1B tetramer structures reveal a knob-pocket mechanism in intermediate filament assembly
    Eldirany, Sherif A.
    Ho, Minh
    Hinbest, Alexander J.
    Lomakin, Ivan B.
    Bunick, Christopher G.
    EMBO JOURNAL, 2019, 38 (11)
  • [47] Xenotropic and polytropic retrovirus receptor 1 (XPR1) promotes progression of tongue squamous cell carcinoma (TSCC) via activation of NF-B signaling
    Chen, Wei-chao
    Li, Qiu-li
    Pan, Qimei
    Zhang, Hua-yong
    Fu, Xiao-yan
    Yao, Fan
    Wang, Jian-ning
    Yang, An-kui
    JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2019, 38 (1)
  • [48] Selective sweeps versus introgression - population genetic dynamics of the murine leukemia virus receptor Xpr1 in wild populations of the house mouse (Mus musculus)
    Hasenkamp, Natascha
    Solomon, Terry
    Tautz, Diethard
    BMC EVOLUTIONARY BIOLOGY, 2015, 15
  • [49] H+ and Pi Byproducts of Glycosylation Affect Ca2+ Homeostasis and Are Retrieved from the Golgi Complex by Homologs of TMEM165 and XPR1
    Snyder, Nathan A.
    Stefan, Christopher P.
    Soroudi, Camille T.
    Kim, Adam
    Evangelista, Carlos
    Cunningham, Kyle W.
    G3-GENES GENOMES GENETICS, 2017, 7 (12): : 3913 - 3924
  • [50] CryoEM structures of the human CLC-2 voltage-gated chloride channel reveal a ball-and-chain gating mechanism
    Xu, Mengyuan
    Neelands, Torben
    Powers, Alexander S.
    Liu, Yan
    Miller, Steven D.
    Pintilie, Grigore D.
    Du Bois, J.
    Dror, Ron O.
    Chiu, Wah
    Maduke, Merritt
    ELIFE, 2024, 12