Human XPR1 structures reveal phosphate export mechanism

被引:9
|
作者
Yan, Rui [1 ,2 ]
Chen, Huiwen [1 ,3 ]
Liu, Chuanyu [1 ,4 ]
Zhao, Jun [5 ]
Wu, Di [1 ,4 ]
Jiang, Juquan [3 ]
Gong, Jianke [2 ]
Jiang, Daohua [1 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Lab Soft Matter Phys, Beijing, Peoples R China
[2] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Key Lab Mol Biophys MOE, Wuhan, Peoples R China
[3] Northeast Agr Univ, Coll Life Sci, Dept Microbiol & Biotechnol, Harbin, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Peking Univ, Shandong Lab Adv Agr Sci Weifang, Inst Adv Agr Sci, Weifang, Peoples R China
基金
中国国家自然科学基金;
关键词
CELL-SURFACE RECEPTOR; LEUKEMIA VIRUSES; CRYO-EM; HOMEOSTASIS; DOMAIN; GENE; EXPRESSION; MUTATIONS; CHANNEL;
D O I
10.1038/s41586-024-07852-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inorganic phosphate (Pi) is a fundamental macronutrient for all living organisms, the homeostasis of which is critical for numerous biological activities(1-3). As the only known human Pi exporter to date, XPR1 has an indispensable role in cellular Pi homeostasis(4,5). Dysfunction of XPR1 is associated with neurodegenerative disease(6-8). However, the mechanisms underpinning XPR1-mediated Pi efflux and regulation by the intracellular inositol polyphosphate (InsPP) sensor SPX domain remain poorly understood. Here we present cryo-electron microscopy structures of human XPR1 in Pi-bound closed, open and InsP(6)-bound forms, revealing the structural basis for XPR1 gating and regulation by InsPPs. XPR1 consists of an N-terminal SPX domain, a dimer-formation core domain and a Pi transport domain. Within the transport domain, three basic clusters are responsible for Pi binding and transport, and a conserved W573 acts as a molecular switch for gating. In addition, the SPX domain binds to InsP(6) and facilitates Pi efflux by liberating the C-terminal loop that limits Pi entry. This study provides a conceptual framework for the mechanistic understanding of Pi homeostasis by XPR1 homologues in fungi, plants and animals.
引用
收藏
页码:960 / 967
页数:24
相关论文
共 50 条
  • [11] XPR1 Mediates the Pancreatic β-Cell Phosphate Flush
    Barker, Christopher J.
    Tessaro, Fernando Henrique Galvao
    Ferreira, Sabrina de Souza
    Simas, Rafael
    Ayala, Thais S.
    Kohler, Martin
    Rajasekaran, Subu Surendran
    Martins, Joilson O.
    Dare, Elisabetta
    Berggren, Per-Olof
    DIABETES, 2021, 70 (01) : 111 - 118
  • [12] PHOSPHATE exporter XPR1/SLC53A1 is required for the tumorigenicity of epithelial ovarian cancer
    Akasu-Nagayoshi, Yoko
    Hayashi, Tomoatsu
    Kawabata, Ayako
    Shimizu, Naomi
    Yamada, Ai
    Yokota, Naoko
    Nakato, Ryuichiro
    Shirahige, Katsuhiko
    Okamoto, Aikou
    Akiyama, Tetsu
    CANCER SCIENCE, 2022, 113 (06) : 2034 - 2043
  • [13] XPR1: a regulator of cellular phosphate homeostasis rather than a Pi exporter
    Burns, David
    Berlinguer-Palmini, Rolando
    Werner, Andreas
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2024, 476 (05): : 861 - 869
  • [14] Structural basis for inositol pyrophosphate gating of the phosphate channel XPR1
    Lu, Yi
    Yue, Chen-Xi
    Zhang, Li
    Yao, Deqiang
    Xia, Ying
    Zhang, Qing
    Zhang, Xinchen
    Li, Shaobai
    Shen, Yafeng
    Cao, Mi
    Guo, Chang-Run
    Qin, An
    Zhao, Jie
    Zhou, Lu
    Yu, Ye
    Cao, Yu
    SCIENCE, 2024, 386 (6723)
  • [15] Astrocytes modulate brain phosphate homeostasis via polarized distribution of phosphate uptake transporter PiT2 and exporter XPR1
    Cheng, Xuewen
    Zhao, Miao
    Chen, Lei
    Huang, Chenwei
    Xu, Qiwu
    Shao, Jia
    Wang, Hong-Tao
    Zhang, Yuxian
    Li, Xuequan
    Xu, Xuan
    Yao, Xiang-Ping
    Lin, Kai-Jun
    Xue, Hui
    Wang, Han
    Chen, Qi
    Zhu, Yong-Chuan
    Zhou, Jia-Wei
    Ge, Woo-Ping
    Zhu, Shu-Jia
    Liu, Jing-Yu
    Chen, Wan-Jin
    Xiong, Zhi-Qi
    NEURON, 2024, 112 (18) : 3126 - 3142.e8
  • [16] Murine Placental-Fetal Phosphate Dyshomeostasis Caused by an Xpr1 Deficiency Accelerates Placental Calcification and Restricts Fetal Growth in Late Gestation
    Xu, Xuan
    Li, Xiunan
    Sun, Hao
    Cao, Zhijian
    Gao, Ruixi
    Niu, Tingting
    Wang, Yanli
    Ma, Tingbin
    Chen, Rui
    Wang, Cheng
    Yang, Zhengang
    Liu, Jing Yu
    JOURNAL OF BONE AND MINERAL RESEARCH, 2020, 35 (01) : 116 - 129
  • [17] The putative polyamine transporter Shp2 facilitates phosphate export in an Xpr1-independent manner and contributes to high phosphate tolerance
    Komamura, Tochi
    Nishimura, Tomoki
    Ohta, Naoki
    Takado, Masahiro
    Matsumoto, Tomohiro
    Takeda, Kojiro
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2025, 301 (01)
  • [18] XPR1: a Gene Linked to Primary Familial Brain Calcification Might Help Explain a Spectrum of Neuropsychiatric Disorders
    Moura, D. A. P.
    Oliveira, J. R. M.
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2015, 57 (04) : 519 - 521
  • [19] XPR1 mutations are a rare cause of primary familial brain calcification
    Anheim, Mathieu
    Lopez-Sanchez, Uriel
    Giovannini, Donatella
    Richard, Anne-Claire
    Touhami, Jawida
    N'Guyen, Ludovic
    Rudolf, Gabrielle
    Thibault-Stoll, Anne
    Frebourg, Thierry
    Hannequin, Didier
    Campion, Dominique
    Battini, Jean-Luc
    Sitbon, Marc
    Nicolas, Gael
    JOURNAL OF NEUROLOGY, 2016, 263 (08) : 1559 - 1564
  • [20] Biallelic XPR1 mutation associated with primary familial brain calcification presenting as paroxysmal kinesigenic dyskinesia with infantile convulsions
    Tang, Li-Ou
    Hou, Bing-Hui
    Zhang, Xiao-Na
    Xi, Zhao-Yan
    Li, Chun-Xiao
    Xu, Lin
    BRAIN & DEVELOPMENT, 2021, 43 (02) : 331 - 336