Slope Stability Prediction Using Principal Component Analysis and Hybrid Machine Learning Approaches

被引:2
|
作者
Lei, Daxing [1 ,2 ]
Zhang, Yaoping [1 ,2 ]
Lu, Zhigang [1 ,2 ]
Lin, Hang [3 ]
Fang, Bowen [4 ]
Jiang, Zheyuan [4 ]
机构
[1] GanNan Univ Sci & Technol, Sch Resources & Architectural Engn, Ganzhou 341000, Peoples R China
[2] Key Lab Mine Geol Disaster Prevent & Control & Eco, Ganzhou 341000, Peoples R China
[3] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Peoples R China
[4] Southeast Univ, Inst Geotech Engn, Jiangsu Key Lab Urban Underground Engn & Environm, Nanjing 210096, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 15期
关键词
slope stability; factor of safety; principal component analysis; machine learning; neural network; ARTIFICIAL NEURAL-NETWORK; SYSTEMS; STRESS; MODEL;
D O I
10.3390/app14156526
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traditional slope stability analysis methods are time-consuming, complex, and cannot provide fast stability estimates when facing a large amount of slope cases. In this case, artificial neural networks (ANN) provide a better alternative. Based on the ANN, the particle swarm optimization (PSO) algorithm, and the principal component analysis (PCA) method, a novel PCA-PANN model is proposed. Then, a dataset of 307 slope cases covering a wide range of slope geometries and mechanical properties of geomaterial is developed. The hybrid machine learning model trained with the dataset is applied to the factor of safety (FoS) prediction of the actual slope, and three evaluation indicators are introduced to measure the prediction performance of the model. Finally, the sensitivity analysis of input parameters is carried out, and the slope protection strategy for different sensitive factors is proposed. The results show that this new model can quickly obtain the FoS and stable state of the slope without complex calculation, only by providing the relevant characteristic parameters. The correlation coefficient of the PCA-PANN model for slope stability analysis reaches more than 0.97. The sensitivity degree of influencing factors from large to small is slope angle, cohesion, pore pressure ratio, slope height, unit weight, and friction angle.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Algorithm for classifying arrhythmia using extreme learning machine and principal component analysis
    Kim, Jinkwon
    Shin, Hangsik
    Lee, Yonwook
    Lee, Myourigho
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 3257 - +
  • [22] Rock Slope Stability Prediction: A Review of Machine Learning Techniques
    Arif, Arifuggaman
    Zhang, Chunlei
    Sajib, Mahabub Hasan
    Uddin, Md Nasir
    Habibullah, Md
    Feng, Ruimin
    Feng, Mingjie
    Rahman, Md Saifur
    Zhang, Ye
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2025, 43 (03)
  • [23] An extreme learning machine approach for slope stability evaluation and prediction
    Zaobao Liu
    Jianfu Shao
    Weiya Xu
    Hongjie Chen
    Yu Zhang
    Natural Hazards, 2014, 73 : 787 - 804
  • [24] An extreme learning machine approach for slope stability evaluation and prediction
    Liu, Zaobao
    Shao, Jianfu
    Xu, Weiya
    Chen, Hongjie
    Zhang, Yu
    NATURAL HAZARDS, 2014, 73 (02) : 787 - 804
  • [25] Prediction and Analysis of Slope Stability Based on IPSO-SVM Machine Learning Model
    Wang, Yu
    Du, Erxia
    Yang, Sanqiang
    Yu, Li
    GEOFLUIDS, 2022, 2022
  • [26] Probabilistic slope stability analysis of Heavy-haul freight corridor using a hybrid machine learning paradigm
    Bardhan, Abidhan
    Samui, Pijush
    TRANSPORTATION GEOTECHNICS, 2022, 37
  • [27] Machine learning approaches for the prediction of soil aggregate stability
    Bouslihim, Yassine
    Rochdi, Aicha
    El Amrani Paaza, Namira
    HELIYON, 2021, 7 (03)
  • [28] Impact of Principal Component Analysis on the Performance of Machine Learning Models for the Prediction of Length of Stay of Patients
    Gupta, Jagriti
    Sharma, Naresh
    Aggarwal, Sandeep
    EMITTER-INTERNATIONAL JOURNAL OF ENGINEERING TECHNOLOGY, 2024, 12 (02) : 128 - 149
  • [29] Quantitative thickness prediction of tectonically deformed coal using Extreme Learning Machine and Principal Component Analysis: a case study
    Wang, Xin
    Li, Yan
    Chen, Tongjun
    Yan, Qiuyan
    Ma, Li
    COMPUTERS & GEOSCIENCES, 2017, 101 : 38 - 47
  • [30] STABILITY PREDICTION OF QUADRUPED ROBOT MOVEMENT USING CLASSIFICATION METHODS AND PRINCIPAL COMPONENT ANALYSIS
    Divandari, Mohammad
    Ghabi, Delaram
    Kalteh, Abdol Aziz
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2023, 21 (04) : 295 - 304