CM-FRAP-Continuum Mechanics-Based Fluorescence Recovery After Photobleaching

被引:0
作者
Saito, Takumi [1 ,2 ,3 ,4 ]
Deguchi, Shinji [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Div Bioengn, Osaka, Japan
[2] Tohoku Univ, Grad Sch Biomed Engn, Sendai, Japan
[3] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[4] Yale Univ, Nanobiol Inst, New Haven, CT 06520 USA
来源
CURRENT PROTOCOLS | 2023年 / 3卷 / 01期
基金
日本学术振兴会;
关键词
biomechanics; confocal laser scanning microscopy; continuum mechanics; cytoskeleton; fluorescence recovery after photobleaching; ANOMALOUS DIFFUSION; STRESS FIBERS; POINT FRAP; PROTEIN; MOBILITY;
D O I
10.1002/cpz1.655
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescence recovery after photobleaching (FRAP) is widely used to evaluate intracellular molecular turnover or repeated translocation of molecules using confocal laser scanning microscopy. While numerous models have been developed for the analysis of FRAP responses, in which chemical interactions and/or fast diffusion processes are involved, it is inherently difficult to evaluate the long-term behavior of molecular turnover because of the presence of intracellular flow and microscopic deformation of bleached regions. To overcome these difficulties, we have developed a novel continuum mechanics-based FRAP (CM-FRAP) approach that enables simultaneous evaluation of long-term molecular turnover and intracellular flow/deformation. Here we demonstrate the utility of CM-FRAP by using actin molecules associated with stress fibers in rat aortic smooth muscle cells with clarification of the experimental setup and data analysis. (c) 2023 Wiley Periodicals LLC.Basic Protocol 1: Plasmid construction and sample preparationBasic Protocol 2: How to perform FRAP experimentsBasic Protocol 3: Data analysis based on CM-FRAP
引用
收藏
页数:17
相关论文
共 25 条
  • [1] MOBILITY MEASUREMENT BY ANALYSIS OF FLUORESCENCE PHOTOBLEACHING RECOVERY KINETICS
    AXELROD, D
    KOPPEL, DE
    SCHLESSINGER, J
    ELSON, E
    WEBB, WW
    [J]. BIOPHYSICAL JOURNAL, 1976, 16 (09) : 1055 - 1069
  • [2] BERK DA, 1993, BIOPHYS J, V65, P2428, DOI 10.1016/S0006-3495(93)81326-2
  • [3] An improved confocal FRAP technique for the measurement of long-term actin dynamics in individual stress fibers
    Campbell, J. J.
    Knight, M. M.
    [J]. MICROSCOPY RESEARCH AND TECHNIQUE, 2007, 70 (12) : 1034 - 1040
  • [4] Carnell M, 2015, METHODS MOL BIOL, V1232, P255, DOI 10.1007/978-1-4939-1752-5_18
  • [5] Revisiting Point FRAP to Quantitatively Characterize Anomalous Diffusion in Live Cells
    Daddysman, Matthew K.
    Fecko, Christopher J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (05) : 1241 - 1251
  • [6] Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum
    Dayel, MJ
    Hom, EFY
    Verkman, AS
    [J]. BIOPHYSICAL JOURNAL, 1999, 76 (05) : 2843 - 2851
  • [7] Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells
    Deguchi, Shinji
    Ohashi, Toshiro
    Sato, Masaaki
    [J]. JOURNAL OF BIOMECHANICS, 2006, 39 (14) : 2603 - 2610
  • [8] Straightforward FRAP for quantitative diffusion measurements with a laser scanning microscope
    Deschout, Hendrik
    Hagman, Joel
    Fransson, Sophia
    Jonasson, Jenny
    Rudemo, Mats
    Loren, Niklas
    Braeckmans, Kevin
    [J]. OPTICS EXPRESS, 2010, 18 (22): : 22886 - 22905
  • [9] Protein mobility in the cytoplasm of Escherichia coli
    Elowitz, MB
    Surette, MG
    Wolf, PE
    Stock, JB
    Leibler, S
    [J]. JOURNAL OF BACTERIOLOGY, 1999, 181 (01) : 197 - 203
  • [10] Anomalous Diffusion Characterization by Fourier Transform-FRAP with Patterned Illumination
    Geiger, Andreas C.
    Smith, Casey J.
    Takanti, Nita
    Harmon, Dustin M.
    Carlsen, Mark S.
    Simpson, Garth J.
    [J]. BIOPHYSICAL JOURNAL, 2020, 119 (04) : 737 - 748