MoL-YOLOv7: Streamlining Industrial Defect Detection With an Optimized YOLOv7 Approach

被引:0
作者
Raj, G. Deepti [1 ]
Prabadevi, B. [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci Engn & Informat Syst, Vellore 632006, Tamil Nadu, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; YOLO; Defect detection; Steel; Computational modeling; Data models; Surface cracks; YOLOv7; MobileNet; loss functions; attention mechanisms; steel surface defect detection; SURFACE; NETWORK;
D O I
10.1109/ACCESS.2024.3447035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Manually checking for defects on industrial parts such as steel surfaces is ineffective, error-prone, and can damage a company's reputation. Current automated methods often lack accuracy or real-time detection capabilities. Early detection allows for timely corrective action, such as removing defective parts or adjusting production parameters which can streamline the manufacturing process and improve brand reputation, customer satisfaction, and compliance with industry standards. This paper presents MoL-YOLOv7 (MobileNet integrated with attention and loss function to You Only Look Once version 7), a deep learning model for accurate and real-time detection of steel defects. MoL-YOLOv7 modifies the YOLOv7 model by inserting a MobileNet block that reduces computational complexity while maintaining accuracy, allowing for faster detection. Adding the SimAm (Simple Parameter free Attention module) attention mechanism to the MobileNet block refines feature representations for complex tasks such as steel defect detection. Finally, replacing loss functions with EIoU (Effective IoU), WIoU (Wise-IoU), and SIoU (Scylla-IoU) improves the localization accuracy and addresses the class imbalance in the data. The modified model achieves high accuracy and real-time detection, enabling a streamlined defect detection process. Experimental results show that the modified model involving different loss functions used in this work achieves high accuracy, i.e. 0.5% to 3.5% higher than the original model YOLOv7. The superiority and validity of our modified model are demonstrated by comparison with other attention mechanisms and loss functions integrated into YOLOv7, and also on different texture datasets, putting forward a modified method to detect surface defects on steel strips in daily operations.
引用
收藏
页码:117090 / 117101
页数:12
相关论文
共 50 条
  • [11] SURFACE DEFECT DETECTION OF STEEL BASED ON IMPROVED YOLOv7 MODEL
    Teng, W. Z.
    Zhang, Y. J.
    Zhang, H. G.
    Gao, D. X.
    METALURGIJA, 2024, 63 (3-4): : 399 - 402
  • [12] A Photovoltaic Panel Defect Detection Method Based on the Improved Yolov7
    Liu, Hongzhi
    Zhang, Fenghe
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 359 - 362
  • [13] Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7
    Huang, Peile
    Wang, Shenghuai
    Chen, Jianyu
    Li, Weijie
    Peng, Xing
    SENSORS, 2023, 23 (16)
  • [14] Research on Low Contrast Surface Defect Detection Method Based on Improved YOLOv7
    Chen, Shuang
    Li, Weipeng
    Yan, Xiang
    Liu, Wen
    Chen, Chao
    Liao, Jinwei
    Chen, Xu
    Shu, Jianqi
    IEEE ACCESS, 2024, 12 : 179997 - 180008
  • [15] AWUCD-Net: The Armored Wire Umbilical Cable Surface Defect Detection Algorithm Based on Improved YOLOv7
    Chen, Du
    Jin, Yongping
    IEEE ACCESS, 2024, 12 : 167559 - 167574
  • [16] Defect detection of small object solder joints based on improved YOLOv7
    Liu, Zhaolong
    Cao, Wei
    Gao, Junwei
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (10) : 1332 - 1340
  • [17] Pavement Defect Detection Algorithm Based on Improved YOLOv7 Complex Background
    Zou, Chunlong
    Huang, Peile
    Wang, Shenghuai
    Wang, Chen
    Wang, Hongxia
    IEEE ACCESS, 2024, 12 : 32870 - 32880
  • [18] Transparent Component Defect Detection Method Based on Improved YOLOv7 Algorithm
    Xiao, Qixun
    Huang, Jingde
    Huang, Zhangyu
    Li, Chenyu
    Xu, Jie
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (14)
  • [19] Lightweight strip steel defect detection algorithm based on improved YOLOv7
    Lu, Jianbo
    Yu, MiaoMiao
    Liu, Junyu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [20] Research on Surface Defect Detection of Strip Steel Based on Improved YOLOv7
    Lv, Baozhan
    Duan, Beiyang
    Zhang, Yeming
    Li, Shuping
    Wei, Feng
    Gong, Sanpeng
    Ma, Qiji
    Cai, Maolin
    SENSORS, 2024, 24 (09)