Spatially Resolved Single-Cell Omics: Methods, Challenges, and Future Perspectives

被引:3
|
作者
Dezem, Felipe Segato [1 ,2 ]
Arjumand, Wani [1 ,2 ]
DuBose, Hannah [1 ,2 ]
Morosini, Natalia Silva [1 ,2 ]
Plummer, Jasmine [1 ,2 ,3 ,4 ]
机构
[1] St Jude Childrens Res Hosp, Ctr Spatial Omics, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA
[3] St Jude Childrens Res Hosp, Dept Cellular & Mol Biol, Memphis, TN 38105 USA
[4] St Jude Childrens Res Hosp, Comprehens Canc Ctr, Memphis, TN 38105 USA
关键词
spatial; multiomics; single cell; in situ hybridization; ISH; proteomics; computational tools; bioinformatic analysis; GENE-EXPRESSION; TISSUE; ORGANIZATION; IMAGE; SEQ;
D O I
10.1146/annurev-biodatasci-102523-103640
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Overlaying omics data onto spatial biological dimensions has been a promising technology to provide high-resolution insights into the interactome and cellular heterogeneity relative to the organization of the molecular microenvironment of tissue samples in normal and disease states. Spatial omics can be categorized into three major modalities: (a) next-generation sequencing-based assays, (b) imaging-based spatially resolved transcriptomics approaches including in situ hybridization/in situ sequencing, and (c) imaging-based spatial proteomics. These modalities allow assessment of transcripts and proteins at a cellular level, generating large and computationally challenging datasets. The lack of standardized computational pipelines to analyze and integrate these nonuniform structured data has made it necessary to apply artificial intelligence and machine learning strategies to best visualize and translate their complexity. In this review, we summarize the currently available techniques and computational strategies, highlight their advantages and limitations, and discuss their future prospects in the scientific field.
引用
收藏
页码:131 / 153
页数:23
相关论文
共 50 条
  • [41] Computational Methods for Single-Cell Imaging and Omics Data Integration
    Watson, Ebony Rose
    Taherian Fard, Atefeh
    Mar, Jessica Cara
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 8
  • [42] Methods and applications for single-cell and spatial multi-omics
    Vandereyken, Katy
    Sifrim, Alejandro
    Thienpont, Bernard
    Voet, Thierry
    NATURE REVIEWS GENETICS, 2023, 24 (08) : 494 - 515
  • [43] Arsenal of single-cell multi-omics methods expanded
    Lin Tang
    Nature Methods, 2021, 18 : 858 - 858
  • [44] Methods and applications for single-cell and spatial multi-omics
    Katy Vandereyken
    Alejandro Sifrim
    Bernard Thienpont
    Thierry Voet
    Nature Reviews Genetics, 2023, 24 : 494 - 515
  • [45] A spatially resolved single-cell genomic atlas of the adult human breast
    Kumar, Tapsi
    Nee, Kevin
    Wei, Runmin
    He, Siyuan
    Nguyen, Quy H.
    Bai, Shanshan
    Blake, Kerrigan
    Pein, Maren
    Gong, Yanwen
    Sei, Emi
    Hu, Min
    Casasent, Anna K.
    Thennavan, Aatish
    Li, Jianzhuo
    Tran, Tuan
    Chen, Ken
    Nilges, Benedikt
    Kashikar, Nachiket
    Braubach, Oliver
    Ben Cheikh, Bassem
    Nikulina, Nadya
    Chen, Hui
    Teshome, Mediget
    Menegaz, Brian
    Javaid, Huma
    Nagi, Chandandeep
    Montalvan, Jessica
    Lev, Tatyana
    Mallya, Sharmila
    Tifrea, Delia F.
    Edwards, Robert
    Lin, Erin
    Parajuli, Ritesh
    Hanson, Summer
    Winocour, Sebastian
    Thompson, Alastair
    Lim, Bora
    Lawson, Devon A.
    Kessenbrock, Kai
    Navin, Nicholas
    NATURE, 2023, 620 (7972) : 181 - +
  • [46] Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram
    Biancalani, Tommaso
    Scalia, Gabriele
    Buffoni, Lorenzo
    Avasthi, Raghav
    Lu, Ziqing
    Sanger, Aman
    Tokcan, Neriman
    Vanderburg, Charles R.
    Segerstolpe, Asa
    Zhang, Meng
    Avraham-Davidi, Inbal
    Vickovic, Sanja
    Nitzan, Mor
    Ma, Sai
    Subramanian, Ayshwarya
    Lipinski, Michal
    Buenrostro, Jason
    Brown, Nik Bear
    Fanelli, Duccio
    Zhuang, Xiaowei
    Macosko, Evan Z.
    Regev, Aviv
    NATURE METHODS, 2021, 18 (11) : 1352 - +
  • [47] Spatially and Single-Cell Resolved Profiling of RNA Life Cycle and Epitranscriptomics
    Zhou, Qiyang
    Guo, Jianting
    Wang, Xiao
    ISRAEL JOURNAL OF CHEMISTRY, 2024, 64 (05)
  • [48] Vitessce: integrative visualization of multimodal and spatially resolved single-cell data
    Keller, Mark S.
    Gold, Ilan
    McCallum, Chuck
    Manz, Trevor
    Kharchenko, Peter V.
    Gehlenborg, Nils
    NATURE METHODS, 2025, 22 (01) : 63 - 67
  • [49] A spatially resolved single-cell genomic atlas of the adult human breast
    Tapsi Kumar
    Kevin Nee
    Runmin Wei
    Siyuan He
    Quy H. Nguyen
    Shanshan Bai
    Kerrigan Blake
    Maren Pein
    Yanwen Gong
    Emi Sei
    Min Hu
    Anna K. Casasent
    Aatish Thennavan
    Jianzhuo Li
    Tuan Tran
    Ken Chen
    Benedikt Nilges
    Nachiket Kashikar
    Oliver Braubach
    Bassem Ben Cheikh
    Nadya Nikulina
    Hui Chen
    Mediget Teshome
    Brian Menegaz
    Huma Javaid
    Chandandeep Nagi
    Jessica Montalvan
    Tatyana Lev
    Sharmila Mallya
    Delia F. Tifrea
    Robert Edwards
    Erin Lin
    Ritesh Parajuli
    Summer Hanson
    Sebastian Winocour
    Alastair Thompson
    Bora Lim
    Devon A. Lawson
    Kai Kessenbrock
    Nicholas Navin
    Nature, 2023, 620 : 181 - 191
  • [50] Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram
    Tommaso Biancalani
    Gabriele Scalia
    Lorenzo Buffoni
    Raghav Avasthi
    Ziqing Lu
    Aman Sanger
    Neriman Tokcan
    Charles R. Vanderburg
    Åsa Segerstolpe
    Meng Zhang
    Inbal Avraham-Davidi
    Sanja Vickovic
    Mor Nitzan
    Sai Ma
    Ayshwarya Subramanian
    Michal Lipinski
    Jason Buenrostro
    Nik Bear Brown
    Duccio Fanelli
    Xiaowei Zhuang
    Evan Z. Macosko
    Aviv Regev
    Nature Methods, 2021, 18 : 1352 - 1362