Spatially Resolved Single-Cell Omics: Methods, Challenges, and Future Perspectives

被引:3
|
作者
Dezem, Felipe Segato [1 ,2 ]
Arjumand, Wani [1 ,2 ]
DuBose, Hannah [1 ,2 ]
Morosini, Natalia Silva [1 ,2 ]
Plummer, Jasmine [1 ,2 ,3 ,4 ]
机构
[1] St Jude Childrens Res Hosp, Ctr Spatial Omics, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA
[3] St Jude Childrens Res Hosp, Dept Cellular & Mol Biol, Memphis, TN 38105 USA
[4] St Jude Childrens Res Hosp, Comprehens Canc Ctr, Memphis, TN 38105 USA
关键词
spatial; multiomics; single cell; in situ hybridization; ISH; proteomics; computational tools; bioinformatic analysis; GENE-EXPRESSION; TISSUE; ORGANIZATION; IMAGE; SEQ;
D O I
10.1146/annurev-biodatasci-102523-103640
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Overlaying omics data onto spatial biological dimensions has been a promising technology to provide high-resolution insights into the interactome and cellular heterogeneity relative to the organization of the molecular microenvironment of tissue samples in normal and disease states. Spatial omics can be categorized into three major modalities: (a) next-generation sequencing-based assays, (b) imaging-based spatially resolved transcriptomics approaches including in situ hybridization/in situ sequencing, and (c) imaging-based spatial proteomics. These modalities allow assessment of transcripts and proteins at a cellular level, generating large and computationally challenging datasets. The lack of standardized computational pipelines to analyze and integrate these nonuniform structured data has made it necessary to apply artificial intelligence and machine learning strategies to best visualize and translate their complexity. In this review, we summarize the currently available techniques and computational strategies, highlight their advantages and limitations, and discuss their future prospects in the scientific field.
引用
收藏
页码:131 / 153
页数:23
相关论文
共 50 条
  • [21] Current and future perspectives of single-cell multi-omics technologies in cardiovascular research
    Wilson Lek Wen Tan
    Wei Qiang Seow
    Angela Zhang
    Siyeon Rhee
    Wing H. Wong
    William J. Greenleaf
    Joseph C. Wu
    Nature Cardiovascular Research, 2023, 2 : 20 - 34
  • [22] Spatially resolved single-cell genomics and transcriptomics by imaging
    Zhuang, Xiaowei
    NATURE METHODS, 2021, 18 (01) : 18 - 22
  • [23] Spatially resolved single-cell genomics and transcriptomics by imaging
    Xiaowei Zhuang
    Nature Methods, 2021, 18 : 18 - 22
  • [24] Transformers in single-cell omics: a review and new perspectives
    Szalata, Artur
    Hrovatin, Karin
    Becker, Soeren
    Tejada-Lapuerta, Alejandro
    Cui, Haotian
    Wang, Bo
    Theis, Fabian J.
    NATURE METHODS, 2024, 21 (08) : 1430 - 1443
  • [25] Spatially Resolved Multi-Omics Single-Cell Analyses Inform Mechanisms of Immune Dysfunction in Pancreatic Cancer
    Yousuf, Suhail
    Qiu, Mengjie
    von Voithenberg, Lena Voith
    Hulkkonen, Johannes
    Macinkovic, Igor
    Schulz, Axel R.
    Hartmann, Domenic
    Mueller, Florian
    Mijatovic, Margarete
    Ibberson, David
    AlHalabi, Karam T.
    Hetzer, Jenny
    Anders, Simon
    Bruene, Bernhard
    Mei, Henrik E.
    Imbusch, Charles D.
    Brors, Benedikt
    Heikenwalder, Mathias
    Gaida, Matthias M.
    Buechler, Markus W.
    Weigert, Andreas
    Hackert, Thilo
    Roth, Susanne
    GASTROENTEROLOGY, 2023, 165 (04) : 891 - 908.e14
  • [26] Optical Cell Tagging for Spatially Resolved Single-Cell RNA Sequencing
    Tang, Qi
    Liu, Lu
    Guo, Yilan
    Zhang, Xu
    Zhang, Shaoran
    Jia, Yan
    Du, Yifei
    Cheng, Bo
    Yang, Li
    Huang, Yanyi
    Chen, Xing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (07)
  • [27] Computational methods for single-cell omics across modalities
    Mirjana Efremova
    Sarah A. Teichmann
    Nature Methods, 2020, 17 : 14 - 17
  • [28] Computational methods for single-cell omics across modalities
    Efremova, Mirjana
    Teichmann, Sarah A.
    NATURE METHODS, 2020, 17 (01) : 14 - 17
  • [29] Multiplexed laser particles for spatially resolved single-cell analysis
    Sheldon J. J. Kwok
    Nicola Martino
    Paul H. Dannenberg
    Seok-Hyun Yun
    Light: Science & Applications, 8
  • [30] Multiplexed laser particles for spatially resolved single-cell analysis
    Kwok, Sheldon J. J.
    Martino, Nicola
    Dannenberg, Paul H.
    Yun, Seok-Hyun
    LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)