Spatially Resolved Single-Cell Omics: Methods, Challenges, and Future Perspectives

被引:3
作者
Dezem, Felipe Segato [1 ,2 ]
Arjumand, Wani [1 ,2 ]
DuBose, Hannah [1 ,2 ]
Morosini, Natalia Silva [1 ,2 ]
Plummer, Jasmine [1 ,2 ,3 ,4 ]
机构
[1] St Jude Childrens Res Hosp, Ctr Spatial Omics, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA
[3] St Jude Childrens Res Hosp, Dept Cellular & Mol Biol, Memphis, TN 38105 USA
[4] St Jude Childrens Res Hosp, Comprehens Canc Ctr, Memphis, TN 38105 USA
来源
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE | 2024年 / 7卷
关键词
spatial; multiomics; single cell; in situ hybridization; ISH; proteomics; computational tools; bioinformatic analysis; GENE-EXPRESSION; TISSUE; ORGANIZATION; IMAGE; SEQ;
D O I
10.1146/annurev-biodatasci-102523-103640
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Overlaying omics data onto spatial biological dimensions has been a promising technology to provide high-resolution insights into the interactome and cellular heterogeneity relative to the organization of the molecular microenvironment of tissue samples in normal and disease states. Spatial omics can be categorized into three major modalities: (a) next-generation sequencing-based assays, (b) imaging-based spatially resolved transcriptomics approaches including in situ hybridization/in situ sequencing, and (c) imaging-based spatial proteomics. These modalities allow assessment of transcripts and proteins at a cellular level, generating large and computationally challenging datasets. The lack of standardized computational pipelines to analyze and integrate these nonuniform structured data has made it necessary to apply artificial intelligence and machine learning strategies to best visualize and translate their complexity. In this review, we summarize the currently available techniques and computational strategies, highlight their advantages and limitations, and discuss their future prospects in the scientific field.
引用
收藏
页码:131 / 153
页数:23
相关论文
共 50 条
  • [1] Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery
    Bonev, Boyan
    Goncalo, Castelo-Branco
    Chen, Fei
    Codeluppi, Simone
    Corces, M. Ryan
    Fan, Jean
    Heiman, Myriam
    Harris, Kenneth
    Inoue, Fumitaka
    Kellis, Manolis
    Levine, Ariel
    Lotfollahi, Mo
    Luo, Chongyuan
    Maynard, Kristen R.
    Nitzan, Mor
    Ramani, Vijay
    Satijia, Rahul
    Schirmer, Lucas
    Shen, Yin
    Sun, Na
    Green, Gilad S.
    Theis, Fabian
    Wang, Xiao
    Welch, Joshua D.
    Gokce, Ozgun
    Konopka, Genevieve
    Liddelow, Shane
    Macosko, Evan
    Bayraktar, Omer
    Habib, Naomi
    Nowakowski, Tomasz J.
    NATURE NEUROSCIENCE, 2024, 27 (12) : 2292 - 2309
  • [2] Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics
    Liao, Jie
    Lu, Xiaoyan
    Shao, Xin
    Zhu, Ling
    Fan, Xiaohui
    TRENDS IN BIOTECHNOLOGY, 2021, 39 (01) : 43 - 58
  • [3] Spatially resolved single-cell genomics and transcriptomics by imaging
    Zhuang, Xiaowei
    NATURE METHODS, 2021, 18 (01) : 18 - 22
  • [4] Integrative Methods and Practical Challenges for Single-Cell Multi-omics
    Ma, Anjun
    McDermaid, Adam
    Xu, Jennifer
    Chang, Yuzhou
    Ma, Qin
    TRENDS IN BIOTECHNOLOGY, 2020, 38 (09) : 1007 - 1022
  • [5] Single-cell omics analyses with single molecular detection: challenges and perspectives
    Misevic, Gradimir
    JOURNAL OF BIOMEDICAL RESEARCH, 2021, 35 (04): : 264 - 276
  • [6] Computational Methods for Single-cell Multi-omics Integration and Alignment
    Stanojevic, Stefan
    Li, Yijun
    Ristivojevic, Aleksandar
    Garmire, Lana X.
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2022, 20 (05) : 836 - 849
  • [7] Opportunities and Challenges in Advancing Plant Research with Single-cell Omics
    Rhaman, Mohammad Saidur
    Ali, Muhammad
    Ye, Wenxiu
    Li, Bosheng
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2024, 22 (02)
  • [8] Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight
    Overbey, Eliah G.
    Das, Saswati
    Cope, Henry
    Madrigal, Pedro
    Andrusivova, Zaneta
    Frapard, Solene
    Klotz, Rebecca
    Bezdan, Daniela
    Gupta, Anjali
    Scott, Ryan T.
    Park, Jiwoon
    Chirko, Dawn
    Galazka, Jonathan M.
    Costes, Sylvain, V
    Mason, Christopher E.
    Herranz, Raul
    Szewczyk, Nathaniel J.
    Borg, Joseph
    Giacomello, Stefania
    CELL REPORTS METHODS, 2022, 2 (11):
  • [9] A single-cell and spatially resolved atlas of human osteosarcomas
    Zheng, Xuejing
    Liu, Xu
    Zhang, Xinxin
    Zhao, Zhenguo
    Wu, Wence
    Yu, Shengji
    JOURNAL OF HEMATOLOGY & ONCOLOGY, 2024, 17 (01)
  • [10] Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram
    Biancalani, Tommaso
    Scalia, Gabriele
    Buffoni, Lorenzo
    Avasthi, Raghav
    Lu, Ziqing
    Sanger, Aman
    Tokcan, Neriman
    Vanderburg, Charles R.
    Segerstolpe, Asa
    Zhang, Meng
    Avraham-Davidi, Inbal
    Vickovic, Sanja
    Nitzan, Mor
    Ma, Sai
    Subramanian, Ayshwarya
    Lipinski, Michal
    Buenrostro, Jason
    Brown, Nik Bear
    Fanelli, Duccio
    Zhuang, Xiaowei
    Macosko, Evan Z.
    Regev, Aviv
    NATURE METHODS, 2021, 18 (11) : 1352 - +