Surface modification of TiO2 nanotubes via pre-loaded hydroxyapatite towards enhanced bioactivity

被引:4
|
作者
Mazare, Anca [1 ]
Hwang, Imgon [2 ]
Tesler, Alexander B. [3 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Surface Sci & Corros, Fac Engn, Dept Mat Sci & Engn, Martensstr 7, D-91058 Erlangen, Germany
[2] Univ Manchester, Henry Royce Inst, Dept Chem, Oxford Rd, Manchester M13 9PL, England
[3] Friedrich Alexander Univ Erlangen Nurnberg, Dept Phys, Biophys Grp, Henkestr 91, D-91052 Erlangen, Germany
来源
MATERIALS TODAY COMMUNICATIONS | 2024年 / 39卷
关键词
TiO; 2; nanotubes; Electrochemical anodization; Bioactivity; Hydroxyapatite; Implantable surfaces; TITANIUM SURFACES; BIOCOMPATIBILITY; COATINGS; DIFFERENTIATION; LAYER;
D O I
10.1016/j.mtcomm.2024.109216
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Anodic TiO2 nanotubes (NTs) are widely established in biomedical applications, as the sub-100 nm morphology significantly impacts their biological activity. In this study, we examine the use and surface functionalization of TiO2 nanotube layers on titanium substrates to facilitate the formation of hydroxyapatite, a crucial ability for implant applications. TiO2 NT layers are grown by electrochemical anodization and the focus is on as-formed and anatase NTs with 100- and 15-nm-diameters, the latter amorphous and available in double-wall (DT) or singlewall (ST) structures. Surface modification of the TiO2 NTs is achieved through an alternate immersion method (AIM) or a simple CaCl2 immersion. The former deposits hydroxyapatite (HA) coatings on/in the NT layers, while the latter forms a thin Ca-surface-modified layer on the TiO2 surface. Both methods effectively induce the formation of an HA layer on 100-nm-diameter NTs after five days of immersion in simulated body fluid (SBF). The chemical composition of NTs is a deciding factor, as the 100-nm-diameter NTs that already contain phosphates (from the anodizing electrolyte) also lead to HA formation by modification via Ca-functionalization (CaCl2 immersion). Whereas, for smaller diameter NTs, the surface nanotopography of the DT and ST NTs is key for the HA nucleation and formation via the AIM approach, but not via immersion in a calcium-containing solution. This promising approach accelerates the growth of HA on TiO2 nanomaterials by initiating apatite nucleation on TiO2 NTs and, thus, has significant implications for increasing their bioactivity in biomedical applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite
    Kodama, A.
    Bauer, S.
    Komatsu, A.
    Asoh, H.
    Ono, S.
    Schmuki, P.
    ACTA BIOMATERIALIA, 2009, 5 (06) : 2322 - 2330
  • [2] Bioactivity of self-organized TiO2 nanotubes used as surface treatment on Ti biomaterials
    Souza, M. R.
    Reyes, K. M.
    Oliveira, N. T. C.
    Kuromoto, N. K.
    Marino, C. E. B.
    MATERIALS RESEARCH EXPRESS, 2016, 3 (03)
  • [3] Crystallinity of Anodic TiO2 Nanotubes and Bioactivity
    An, Sang-Hyun
    Narayanan, Ramaswamy
    Matsumoto, Takuya
    Lee, Hyo-Jin
    Kwon, Tae-Yub
    Kim, Kyo-Han
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (06) : 4910 - 4918
  • [4] Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes
    Kim, Seo Young
    Kim, Yu Kyoung
    Park, Il Song
    Jin, Guang Chun
    Bae, Tae Sung
    Lee, Min Ho
    APPLIED SURFACE SCIENCE, 2014, 321 : 412 - 419
  • [5] Hydroxyapatite growth on anodic TiO2 nanotubes
    Tsuchiya, Hiroaki
    Macak, Jan M.
    Mueller, Lenka
    Kunze, Julia
    Mueller, Frank
    Greil, Peter
    Virtanen, Sannakaisa
    Schmuki, Patrik
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 77A (03) : 534 - 541
  • [6] The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes
    Bai, Yu
    Park, Song
    Park, Hyeoung Ho
    Lee, Min Ho
    Bae, Tae Sung
    Duncan, Warwick
    Swain, Andmichael
    SURFACE AND INTERFACE ANALYSIS, 2011, 43 (06) : 998 - 1005
  • [7] Wettability and In Vitro Bioactivity of Doped TiO2 Nanotubes
    Huang Lin
    Ning Cong-Qin
    Ding Dong-Yan
    Bai Shuo
    Qin Rui
    Li Ming
    Mao Da-Li
    JOURNAL OF INORGANIC MATERIALS, 2010, 25 (07) : 775 - 779
  • [8] Biocompatibility of Nanoscale Hydroxyapatite Coating on TiO2 Nanotubes
    Zhang, Xiaokai
    Zhang, Dechuang
    Peng, Qing
    Lin, Jianguo
    Wen, Cuie
    MATERIALS, 2019, 12 (12):
  • [9] Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition
    Chen, Jianyu
    Zhang, Zhiguang
    Ouyang, Jianglin
    Chen, Xianshuai
    Xu, Zhewu
    Sun, Xuetong
    APPLIED SURFACE SCIENCE, 2014, 305 : 24 - 32
  • [10] Enhancement of corrosion resistance and bioactivity of titanium by Au nanoparticle-loaded TiO2 nanotube layer
    Wang, Cunyang
    Bai, Yu
    Bai, Yulong
    Gao, Jingjun
    Ma, Wen
    SURFACE & COATINGS TECHNOLOGY, 2016, 286 : 327 - 334