Controllable preparation of carbon coating Ge nanospheres with a cubic hollow structure for high-performance lithium ion batteries

被引:2
作者
Zhao, Ying [1 ]
Li, Yilin [1 ]
Wang, Tingyu [1 ]
Zhao, Xudong [1 ]
Kong, Xianglong [1 ]
Li, Gaofu [1 ]
Wang, Zicong [1 ]
He, Fei [1 ]
Chang, Xinghua [2 ]
Liu, Zhiliang [1 ]
Wu, Linzhi [3 ]
Zhang, Milin [1 ]
Yang, Piaoping [1 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Peoples R China
[2] Cent South Univ, Sch Minerals Proc & Bioengn, Key Lab Mineral Mat & Applicat Hunan Prov, Changsha 410083, Peoples R China
[3] Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Germanium; Anode; Hollow structure; Controllable synthesis; Lithium storage; GRAPHENE; ANODE; GERMANIUM; NANOPARTICLES; COMPOSITES;
D O I
10.1016/j.jcis.2024.08.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Germanium based nanomaterials are very promising as the anodes for the lithium ion batteries since their large specific capacity, excellent lithium diffusivity and high conductivity. However, their controllable preparation is still very difficult to achieve. Herein, we facilely prepare a unique carbon coating Ge nanospheres with a cubic hollow structure (Ge@C) via a hydrothermal synthesis and subsequent pyrolysis using low-cost GeO2 as precursors. The hollow Ge@C nanostructure not only provides abundant interior space to alleviate the huge volumetric expansion of Ge upon lithiation, but also facilitates the transmission of lithium ions and electrons. Moreover, experiment analyses and density functional theory (DFT) calculations unveil the excellent lithium adsorption ability, high exchange current density, low activation energy for lithium diffusion of the hollow Ge@C electrode, thus exhibiting significant lithium storage advantages with a large charge capacity (1483 mAh/ of Interface (2025) g under 200 mA g-- 1 ), distinguished rate ability (710 mAh/g under 8000 mA g-1)-1 ) as well as long-term cycling stability (1130 mAh/g after 900 cycles under 1000 mA g-1).-1 ). Therefore, this work offers new paths for controllable synthesis and fabrication of high-performance Ge based lithium storage nanomaterials.
引用
收藏
页码:655 / 664
页数:10
相关论文
共 50 条
[21]   Hollow nanospheres composed of titanium dioxide nanocrystals modified with carbon and gold for high performance lithium ion batteries [J].
Geng, Hongbo ;
Cao, Xueqin ;
Zhang, Yu ;
Geng, Kaiming ;
Qu, Genlong ;
Tang, Minghua ;
Zheng, Junwei ;
Yang, Yonggang ;
Gu, Hongwei .
JOURNAL OF POWER SOURCES, 2015, 294 :465-472
[22]   Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium ion batteries [J].
Zhao, Fangyuan ;
Zhao, Xin ;
Peng, Bo ;
Gan, Feng ;
Yao, Mengyao ;
Tan, Wenjun ;
Dong, Jie ;
Zhang, Qinghua .
CHINESE CHEMICAL LETTERS, 2018, 29 (11) :1692-1697
[23]   Hydrothermal synthesis of silicon nanosphere embedded on carbon nanotubes for high-performance lithium-ion batteries [J].
Vanpariya, Anjali ;
Marathey, Priyanka ;
Khanna, Sakshum ;
Patel, Roma ;
Mukhopadhyay, Indrajit .
INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2021, 18 (5-8) :483-493
[24]   Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries [J].
Huo, Kaifu ;
An, Weili ;
Fu, Jijiang ;
Gao, Biao ;
Wang, Lei ;
Peng, Xiang ;
Cheng, Gary J. ;
Chu, Paul K. .
JOURNAL OF POWER SOURCES, 2016, 324 :233-238
[25]   Electrospinning carbon-coated hollow aluminum nanobeads fibers for high-performance lithium-ion batteries [J].
Tang, Jiahao ;
Sun, Junlong ;
Ren, Zihua ;
Xu, Yuanhu ;
Li, Yanwei ;
Zhu, Qing ;
Li, Jinliang ;
Liu, Bo-Tian .
SURFACES AND INTERFACES, 2024, 49
[26]   Preparation of nanostructured Ge/GeO2 composite in carbon matrix as an anode material for lithium-ion batteries [J].
Yoon, Sukeun ;
Jung, Seok-Ha ;
Jung, Kyu-Nam ;
Woo, Sang-Gil ;
Cho, Woosuk ;
Jo, Yong-Nam ;
Cho, Kuk Young .
ELECTROCHIMICA ACTA, 2016, 188 :120-125
[27]   Preparation of SiOx@C via wet carbon coating for high performance lithium-ion batteries [J].
Wan, Yan ;
Jin, Chenxin ;
Xu, Guojun ;
Chen, Huaide ;
Sun, Fugen ;
Li, Yong ;
Zhou, Lang ;
Yue, Zhihao .
SOLID STATE IONICS, 2024, 411
[28]   Preparation of ZnO Nanorods/Graphene Composite Anodes for High-Performance Lithium-Ion Batteries [J].
Zhang, Junfan ;
Tan, Taizhe ;
Zhao, Yan ;
Liu, Ning .
NANOMATERIALS, 2018, 8 (12)
[29]   Electrospraying preparation of metal germanate nanospheres for high-performance lithium-ion batteries and room-temperature gas sensors [J].
Li, Rui ;
Zhang, Renmu ;
Lou, Zheng ;
Huang, Tingting ;
Jiang, Kai ;
Chen, Di ;
Shen, Guozhen .
NANOSCALE, 2019, 11 (25) :12116-12123
[30]   Incorporating cerium dioxide into nitrogen-doped carbon fibers for high-performance lithium-ion batteries [J].
Wen, Gongyu ;
Zhang, Xiaoping ;
Wang, Jie ;
Wang, Yian ;
Rao, Kexin ;
Sui, Yulei ;
Fei, Wenbin ;
Zhang, Jiuxiang ;
Wu, Ling .
ADVANCED POWDER TECHNOLOGY, 2024, 35 (04)