A modified slime mold algorithm for parameter identification of hydrogen-powered proton exchange membrane fuel cells

被引:6
|
作者
Menesy, Ahmed S. [1 ]
Sultan, Hamdy M. [2 ,3 ]
Zayed, Mohamed E. [4 ]
Habiballah, Ibrahim O. [1 ]
Dmitriev, Stepan [5 ]
Safaraliev, Murodbek [5 ]
Kamel, Salah [6 ]
机构
[1] King Fahd Univ Petr & Minerals KFUPM, Elect Engn Dept, Dhahran 31261, Saudi Arabia
[2] Minia Univ, Fac Engn, Elect Engn Dept, Al Minya 61517, Egypt
[3] Nahda Univ Beni Suef, Fac Engn, Dept Mechatron Engn, Bani Suwayf 62764, Egypt
[4] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Sustainable Energy Syst, Dhahran 31261, Saudi Arabia
[5] Ural Fed Univ, Dept Automated Elect Syst, Ekaterinburg 620002, Russia
[6] Aswan Univ, Fac Engn, Elect Engn Dept, Aswan 81542, Egypt
关键词
Hydrogen; Parameter estimation; Performance; Optimization; PEMFC; Slime mould algorithm; Dynamic PEMFC modeling; OPTIMIZATION ALGORITHM;
D O I
10.1016/j.ijhydene.2024.08.328
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the quest for sustainable and efficient energy solutions, hydrogen fuel cells emerge as a beacon of hope, offering a promising pathway towards a greener future. Accurate Identification of the ungiven parameters of proton exchange membrane fuel cell (PEMFC) mathematical models is indispensable for designing, managing, and simulating the practical PEMFC. In order to identify the parameters of PEMFC punctually, this paper presents a modified version of the slime mould algorithm (MSMA). In order to increase capability of the MSMA in the exploitation phase, both locally and globally, the sine-cosine technique has been utilized to boost the search capabilities. To assess the performance of MSMA, MSMA is first utilized to address ten well-known benchmark functions. The obtained results confirm that MSMA outperforms SMA on all benchmark functions. Then, MSMA is employed to solve the optimization problem of different mechanical design problems and also the MSMA provides superior performance over the standard SMA. Finally, the MSMA is used to identify the unknown parameters of four typical PEMFCs: 250W PEMFC, BCS 500W PEMFC, AVISTA SR-12 model, and the Temasek 1 kW PEMFC model. Experimental results boost the supremacy of MSMA in the PEMFC parameters extraction by comparing it with the original SMA and well-known potent optimization techniques. Furthermore, MATLAB/ Simulink is employed for advanced dynamic PEMFC modeling, facilitating a comprehensive assessment of fuel cell parameters. The validation of this dynamic PEMFC model, using MSMA-optimized parameters, establishes its practical utility in system analysis and real-world fuel cell operation, marking a significant advancement in PEMFC technology management and simulation.
引用
收藏
页码:853 / 874
页数:22
相关论文
共 50 条
  • [41] Proton exchange membrane nanocomposites for fuel cells
    Hickner, M
    Kim, YS
    Wang, F
    Zawodzinski, TA
    McGrath, JE
    ADVANCING AFFORDABLE MATERIALS TECHNOLOGY, 2001, 33 : 1519 - 1532
  • [42] Parameter analysis from the modeling of high temperature proton exchange membrane fuel cells
    Kim, Eunji
    Song, Seunghwan
    Choi, Seoeun
    Park, Jung Ock
    Kim, Junghwan
    Kwon, Kyungjung
    APPLIED ENERGY, 2021, 301
  • [43] An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells
    Mei, Jian
    Meng, Xuan
    Tang, Xingwang
    Li, Heran
    Hasanien, Hany
    Alharbi, Mohammed
    Dong, Zhen
    Shen, Jiabin
    Sun, Chuanyu
    Fan, Fulin
    Jiang, Jinhai
    Song, Kai
    ENERGIES, 2024, 17 (12)
  • [44] Effects of parameter uncertainty on the performance variability of proton exchange membrane (PEM) fuel cells
    Mawardi, A.
    Pitchumani, R.
    JOURNAL OF POWER SOURCES, 2006, 160 (01) : 232 - 245
  • [45] A modified decal method for preparing the membrane electrode assembly of proton exchange membrane fuel cells
    Liang, Xiaolu
    Pan, Guoshun
    Xu, Li
    Wang, Jiashu
    FUEL, 2015, 139 : 393 - 400
  • [46] A Review on Mass Transfer in Multiscale Porous Media in Proton Exchange Membrane Fuel Cells: Mechanism, Modeling, and Parameter Identification
    Yang, Fan
    Xu, Xiaoming
    Li, Yuehua
    Chen, Dongfang
    Hu, Song
    He, Ziwen
    Du, Yi
    ENERGIES, 2023, 16 (08)
  • [47] A two stage differential evolution algorithm for parameter estimation of proton exchange membrane fuel cell
    Aljaidi, Mohammad
    Agrawal, Sunilkumar P.
    Jangir, Pradeep
    Pandya, Sundaram B.
    Parmar, Anil
    Arpita
    Alkoradees, Ali Fayez
    Trivedi, Bhargavi Indrajit
    Khishe, Mohammad
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [48] Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
    Zhang, Wei
    Wang, Ning
    Yang, Shipin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (14) : 5796 - 5806
  • [49] Identification and analysis based on genetic algorithm for proton exchange membrane fuel cell stack
    Xi Li
    Guang-yi Cao
    Xin-jian Zhu
    Dong Wei
    Journal of Central South University of Technology, 2006, 13 : 428 - 431
  • [50] Identification and analysis based on genetic algorithm for proton exchange membrane fuel cell stack
    李曦
    曹广益
    朱新坚
    卫东
    Journal of Central South University of Technology(English Edition), 2006, (04) : 428 - 431