A modified slime mold algorithm for parameter identification of hydrogen-powered proton exchange membrane fuel cells

被引:6
|
作者
Menesy, Ahmed S. [1 ]
Sultan, Hamdy M. [2 ,3 ]
Zayed, Mohamed E. [4 ]
Habiballah, Ibrahim O. [1 ]
Dmitriev, Stepan [5 ]
Safaraliev, Murodbek [5 ]
Kamel, Salah [6 ]
机构
[1] King Fahd Univ Petr & Minerals KFUPM, Elect Engn Dept, Dhahran 31261, Saudi Arabia
[2] Minia Univ, Fac Engn, Elect Engn Dept, Al Minya 61517, Egypt
[3] Nahda Univ Beni Suef, Fac Engn, Dept Mechatron Engn, Bani Suwayf 62764, Egypt
[4] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Sustainable Energy Syst, Dhahran 31261, Saudi Arabia
[5] Ural Fed Univ, Dept Automated Elect Syst, Ekaterinburg 620002, Russia
[6] Aswan Univ, Fac Engn, Elect Engn Dept, Aswan 81542, Egypt
关键词
Hydrogen; Parameter estimation; Performance; Optimization; PEMFC; Slime mould algorithm; Dynamic PEMFC modeling; OPTIMIZATION ALGORITHM;
D O I
10.1016/j.ijhydene.2024.08.328
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the quest for sustainable and efficient energy solutions, hydrogen fuel cells emerge as a beacon of hope, offering a promising pathway towards a greener future. Accurate Identification of the ungiven parameters of proton exchange membrane fuel cell (PEMFC) mathematical models is indispensable for designing, managing, and simulating the practical PEMFC. In order to identify the parameters of PEMFC punctually, this paper presents a modified version of the slime mould algorithm (MSMA). In order to increase capability of the MSMA in the exploitation phase, both locally and globally, the sine-cosine technique has been utilized to boost the search capabilities. To assess the performance of MSMA, MSMA is first utilized to address ten well-known benchmark functions. The obtained results confirm that MSMA outperforms SMA on all benchmark functions. Then, MSMA is employed to solve the optimization problem of different mechanical design problems and also the MSMA provides superior performance over the standard SMA. Finally, the MSMA is used to identify the unknown parameters of four typical PEMFCs: 250W PEMFC, BCS 500W PEMFC, AVISTA SR-12 model, and the Temasek 1 kW PEMFC model. Experimental results boost the supremacy of MSMA in the PEMFC parameters extraction by comparing it with the original SMA and well-known potent optimization techniques. Furthermore, MATLAB/ Simulink is employed for advanced dynamic PEMFC modeling, facilitating a comprehensive assessment of fuel cell parameters. The validation of this dynamic PEMFC model, using MSMA-optimized parameters, establishes its practical utility in system analysis and real-world fuel cell operation, marking a significant advancement in PEMFC technology management and simulation.
引用
收藏
页码:853 / 874
页数:22
相关论文
共 50 条
  • [31] A new optimum technique for parameter identification of the proton exchange membrane fuel cells based on improved remora optimizer
    Hou, Maojun
    Li, Yanhang
    Peng, Fei
    Rouyendegh, Babak Daneshvar
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (01) : 3019 - 3040
  • [32] A Tribe Particle Swarm Optimization for Parameter Identification of Proton Exchange Membrane Fuel Cell
    Sedighizadeh, M.
    Kashani, M. Farhangian
    INTERNATIONAL JOURNAL OF ENGINEERING, 2015, 28 (01): : 16 - 24
  • [33] Parameter Identification of Proton Exchange Membrane Fuel Cell Stacks Using Bonobo Optimizer
    Sultan, Hamdy M.
    Menesy, Ahmed S.
    Kamel, Salah
    Tostado-Veliz, Marcos
    Jurado, Francisco
    2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2020,
  • [34] A modified serpentine flow slab for in Proton Exchange Membrane Fuel Cells (PEMFCs)
    Wang, Chin-Tsan
    Ou, Yun-Ting
    Wu, Bing-Xue
    Thangavel, Sangeetha
    Hong, Shu-Wen
    Chung, Wen-Tong
    Yan, Wei-Mon
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 667 - 673
  • [35] Computer simulation of hydrogen proton exchange membrane and direct methanol fuel cells
    Cheng, C. H.
    Fei, K.
    Hong, C. W.
    COMPUTERS & CHEMICAL ENGINEERING, 2007, 31 (04) : 247 - 257
  • [36] HYDROGEN OXYGEN PROTON-EXCHANGE MEMBRANE FUEL-CELLS AND ELECTROLYZERS
    BALDWIN, R
    PHAM, M
    LEONIDA, A
    MCELROY, J
    NALETTE, T
    JOURNAL OF POWER SOURCES, 1990, 29 (3-4) : 399 - 412
  • [37] A review of modified metal bipolar plates for proton exchange membrane fuel cells
    Wu, Sida
    Yang, Weimin
    Yan, Hua
    Zuo, Xiahua
    Cao, Zibo
    Li, Haoyang
    Shi, Meinong
    Chen, Hongbo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (12) : 8672 - 8701
  • [38] Modeling hydrogen starvation conditions in proton-exchange membrane fuel cells
    Ohs, Jan Hendrik
    Sauter, Ulrich
    Maass, Sebastian
    Stolten, Detlef
    JOURNAL OF POWER SOURCES, 2011, 196 (01) : 255 - 263
  • [39] An algorithm for diagnosis of proton exchange membrane fuel cells by electrochemical impedance spectroscopy
    Tant, S.
    Rosini, S.
    Thivel, P. -X.
    Druart, F.
    Rakotondrainibe, A.
    Geneston, T.
    Bultel, Y.
    ELECTROCHIMICA ACTA, 2014, 135 : 368 - 379
  • [40] An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells
    Zhang, Li
    Wang, Ning
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (01) : 219 - 228