A modified slime mold algorithm for parameter identification of hydrogen-powered proton exchange membrane fuel cells

被引:6
|
作者
Menesy, Ahmed S. [1 ]
Sultan, Hamdy M. [2 ,3 ]
Zayed, Mohamed E. [4 ]
Habiballah, Ibrahim O. [1 ]
Dmitriev, Stepan [5 ]
Safaraliev, Murodbek [5 ]
Kamel, Salah [6 ]
机构
[1] King Fahd Univ Petr & Minerals KFUPM, Elect Engn Dept, Dhahran 31261, Saudi Arabia
[2] Minia Univ, Fac Engn, Elect Engn Dept, Al Minya 61517, Egypt
[3] Nahda Univ Beni Suef, Fac Engn, Dept Mechatron Engn, Bani Suwayf 62764, Egypt
[4] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Sustainable Energy Syst, Dhahran 31261, Saudi Arabia
[5] Ural Fed Univ, Dept Automated Elect Syst, Ekaterinburg 620002, Russia
[6] Aswan Univ, Fac Engn, Elect Engn Dept, Aswan 81542, Egypt
关键词
Hydrogen; Parameter estimation; Performance; Optimization; PEMFC; Slime mould algorithm; Dynamic PEMFC modeling; OPTIMIZATION ALGORITHM;
D O I
10.1016/j.ijhydene.2024.08.328
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the quest for sustainable and efficient energy solutions, hydrogen fuel cells emerge as a beacon of hope, offering a promising pathway towards a greener future. Accurate Identification of the ungiven parameters of proton exchange membrane fuel cell (PEMFC) mathematical models is indispensable for designing, managing, and simulating the practical PEMFC. In order to identify the parameters of PEMFC punctually, this paper presents a modified version of the slime mould algorithm (MSMA). In order to increase capability of the MSMA in the exploitation phase, both locally and globally, the sine-cosine technique has been utilized to boost the search capabilities. To assess the performance of MSMA, MSMA is first utilized to address ten well-known benchmark functions. The obtained results confirm that MSMA outperforms SMA on all benchmark functions. Then, MSMA is employed to solve the optimization problem of different mechanical design problems and also the MSMA provides superior performance over the standard SMA. Finally, the MSMA is used to identify the unknown parameters of four typical PEMFCs: 250W PEMFC, BCS 500W PEMFC, AVISTA SR-12 model, and the Temasek 1 kW PEMFC model. Experimental results boost the supremacy of MSMA in the PEMFC parameters extraction by comparing it with the original SMA and well-known potent optimization techniques. Furthermore, MATLAB/ Simulink is employed for advanced dynamic PEMFC modeling, facilitating a comprehensive assessment of fuel cell parameters. The validation of this dynamic PEMFC model, using MSMA-optimized parameters, establishes its practical utility in system analysis and real-world fuel cell operation, marking a significant advancement in PEMFC technology management and simulation.
引用
收藏
页码:853 / 874
页数:22
相关论文
共 50 条
  • [1] On-Board Hydrogen Powered Proton Exchange Membrane Fuel Cells
    Semiz, L.
    Abdullayeva, N.
    Sankir, M.
    Sankir, N. Demirci
    POLYMER ELECTROLYTE FUEL CELLS 16 (PEFC 16), 2016, 75 (14): : 511 - 513
  • [2] Parameter identification of proton exchange membrane fuel cells using an improved salp swarm algorithm
    Sultan, Hamdy M.
    Menesy, Ahmed S.
    Kamel, Salah
    Selim, Ali
    Jurado, Francisco
    ENERGY CONVERSION AND MANAGEMENT, 2020, 224
  • [3] An Efficient Parameter Estimation Algorithm for Proton Exchange Membrane Fuel Cells
    Abdel-Basset, Mohamed
    Mohamed, Reda
    Chang, Victor
    ENERGIES, 2021, 14 (21)
  • [4] A hybrid slime mold enhanced convergent particle swarm optimizer for parameter estimation of proton exchange membrane fuel cell
    Aljaidi, Mohammad
    Agrawal, Sunilkumar P.
    Parmar, Anil
    Jangir, Pradeep
    Arpita, Bhargavi Indrajit
    Trivedi, Bhargavi Indrajit
    Gulothungan, G.
    Alkoradees, Ali Fayez
    Jangid, Reena
    Khishe, Mohammad
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [5] Parameter identification of proton exchange membrane fuel cell based on swarm intelligence algorithm
    Zhang, Bo
    Wang, Rongjie
    Jiang, Desong
    Wang, Yichun
    Lin, Anhui
    Wang, Jianfeng
    Ruan, Bingcong
    ENERGY, 2023, 283
  • [6] Tree Growth Algorithm for Parameter Identification of Proton Exchange Membrane Fuel Cell Models
    Sultan, Hamdy M.
    Menesy, Ahmed S.
    Kamel, Salah
    Jurado, Francisco
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (02): : 101 - 111
  • [7] Bald Eagle Search Algorithm for Parameter Identification of Proton Exchange Membrane Fuel Cell
    Yang, Bo
    Li, Danyang
    Zeng, Chunyuan
    Han, Yiming
    Li, Junhui
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [8] PARAMETER IDENTIFICATION OF PROTON EXCHANGE MEMBRANE FUEL CELLS MODEL BASED ON IMPROVED CHICKEN SWARM OPTIMIZATION ALGORITHM
    Yang Y.
    Ling M.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (02): : 269 - 278
  • [9] Hydrogen and methanol proton exchange membrane fuel cells
    Schmidt, VM
    Stimming, U
    HYDROGEN ENERGY PROGRESS XI, VOLS 1-3, 1996, : 1717 - 1725
  • [10] Implementation of Accurate Parameter Identification for Proton Exchange Membrane Fuel Cells and Photovoltaic Cells Based on Improved Honey Badger Algorithm
    Yu, Wei-Lun
    Wen, Chen-Kai
    Liu, En-Jui
    Chang, Jen-Yuan
    MICROMACHINES, 2024, 15 (08)