Hypergraph contrastive learning for recommendation with side information

被引:1
|
作者
Ao, Dun [1 ]
Cao, Qian [1 ]
Wang, Xiaofeng [2 ]
机构
[1] Beijing Univ Technol, Coll Artificial Intelligence & Automat, Beijing, Peoples R China
[2] Beijing Univ Technol, Control Sci & Engn, Beijing, Peoples R China
关键词
Recommendation system; Side information; Graph neural network; Contrastive learning;
D O I
10.1108/IJICC-06-2024-0266
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Purpose - This paper addresses the limitations of current graph neural network-based recommendation systems, which often neglect the integration of side information and the modeling of complex high-order interactions among nodes. The research motivation stems from the need to enhance recommendation performance by effectively utilizing all available data. We propose a novel method called MSHCN, which leverages hypergraph neural networks to integrate side information and model complex interactions, thereby improving user and item representations. Design/methodology/approach - The MSHCN method employs a hypergraph structure to incorporate various types of side information, including social relationships among users and item attributes, which are essential for enriching user and item representations. The k-means clustering algorithm is utilized to create item-associated hypergraphs, while sentiment analysis on user reviews refines the modeling of user interests. Additionally, hypergraphs are constructed for user-user and item-item interactions based on interaction similarity. MSHCN also incorporates contrastive learning as an auxiliary task to enhance the representation learning process. Findings - Extensive experiments demonstrate that MSHCN significantly outperforms existing recommendation models, particularly in its ability to capture and utilize side information and high-order interactions. This results in superior user and item representations and improved recommendation performance. Originality/value - The novelty of MSHCN lies in its use of a hypergraph structure to integrate diverse side information and model intricate high-order interactions. The incorporation of contrastive learning as an auxiliary task sets it apart from other hypergraph-based models, providing a significant enhancement in recommendation accuracy.
引用
收藏
页码:657 / 670
页数:14
相关论文
共 50 条
  • [41] Personalized Federated Contrastive Learning for Recommendation
    Wang, Shanfeng
    Zhou, Yuxi
    Fan, Xiaolong
    Li, Jianzhao
    Lei, Zexuan
    Gong, Maoguo
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2025,
  • [42] CLEAR: Contrastive Learning for API Recommendation
    Wei, Moshi
    Harzevili, Nima Shiri
    Huang, Yuchao
    Wang, Junjie
    Wang, Song
    2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2022), 2022, : 376 - 387
  • [43] Service recommendation based on contrastive learning and multi-task learning
    Yu, Ting
    Zhang, Lihua
    Liu, Hailin
    Liu, Hongbing
    Wang, Jiaojiao
    COMPUTER COMMUNICATIONS, 2024, 213 : 285 - 295
  • [44] Adaptive Graph Contrastive Learning for Recommendation
    Jiang, Yangqin
    Huang, Chao
    Xia, Lianghao
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4252 - 4261
  • [45] Preference Contrastive Learning for Personalized Recommendation
    Bai, Yulong
    Jian, Meng
    Li, Shuyi
    Wu, Lifang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 356 - 367
  • [46] Recommendation Method for Contrastive Enhancement of Neighborhood Information
    Wang, Hairong
    Zhou, Beijing
    Zhang, Lisi
    Ma, He
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (01): : 453 - 472
  • [47] A Knowledge Graph Recommendation Approach Incorporating Contrastive and Relationship Learning
    Shen, Xintao
    Zhang, Yulai
    IEEE ACCESS, 2023, 11 : 99628 - 99637
  • [48] MultiCBR: Multi-view Contrastive Learning for Bundle Recommendation
    Ma, Yunshan
    He, Yingzhi
    Wang, Xiang
    Wei, Yinwei
    Du, Xiaoyu
    Fu, Yuyangzi
    Chua, Tat-Seng
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (04)
  • [49] SimCPSR: Simple Contrastive Learning for Paper Submission Recommendation System
    Le, Duc H.
    Doan, Tram T.
    Huynh, Son T.
    Nguyen, Binh T.
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT I, 2022, 13757 : 51 - 63
  • [50] Adaptive multi-graph contrastive learning for bundle recommendation
    Tao, Qian
    Liu, Chenghao
    Xia, Yuhan
    Xu, Yong
    Li, Lusi
    NEURAL NETWORKS, 2025, 181