Categoricity and multidimensional diagrams

被引:0
|
作者
Shelah, Saharon [1 ,2 ]
Vasey, Sebastien [3 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 以色列科学基金会; 欧洲研究理事会;
关键词
abstract elementary classes; good frames; categoricity; forking; multidimensional diagrams; excellence; ABSTRACT ELEMENTARY CLASSES; UNIVERSAL CLASSES; FORKING; CLASSIFICATION; CONJECTURE; SUCCESSOR; TAMENESS; MODELS; SUPERSTABILITY; INDEPENDENCE;
D O I
10.4171/JEMS/1477
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study multidimensional diagrams in independent amalgamation in the framework of abstract elementary classes (AECs). We use them to prove the eventual categoricity conjecture for AECs, assuming a large cardinal axiom. More precisely, we show assuming the existence of a proper class of strongly compact cardinals that an AEC which has a single model of some high enough cardinality will have a single model in any high enough cardinal. Assuming a weak version of the generalized continuum hypothesis, we also establish the eventual categoricity conjecture for AECs with amalgamation.
引用
收藏
页码:2301 / 2372
页数:72
相关论文
共 50 条