Can Delta Radiomics Improve the Prediction of Best Overall Response, Progression-Free Survival, and Overall Survival of Melanoma Patients Treated with Immune Checkpoint Inhibitors?

被引:2
作者
Peisen, Felix [1 ]
Gerken, Annika [2 ]
Hering, Alessa [2 ,3 ]
Dahm, Isabel [1 ]
Nikolaou, Konstantin [1 ,4 ]
Gatidis, Sergios [1 ,5 ]
Eigentler, Thomas K. [6 ,7 ,8 ,9 ]
Amaral, Teresa [6 ]
Moltz, Jan H. [2 ]
Othman, Ahmed E. [10 ]
机构
[1] Eberhard Karls Univ Tubingen, Tuebingen Univ Hosp, Dept Diagnost & Intervent Radiol, Hoppe Seyler Str 3, D-72076 Tubingen, Germany
[2] Fraunhofer Inst Digital Med MEVIS, Max von Laue Str 2, D-28359 Bremen, Germany
[3] Radboudumc, Diagnost Image Anal Grp, Geert Grooteplein Zuid 10, NL-6525 GA Nijmegen, Netherlands
[4] Eberhard Karls Univ Tubingen, Fac Med, Cluster Excellence iFIT EXC Image Guided & Functio, D-72076 Tubingen, Germany
[5] Max Planck Inst Intelligent Syst, Max Planck Ring 4, D-72076 Tubingen, Germany
[6] Eberhard Karls Univ Tubingen, Tuebingen Univ Hosp, Ctr Dermato Oncol, Dept Dermatol, Liebermeisterstr 25, D-72076 Tubingen, Germany
[7] Charite Univ med Berlin, Humboldt Univ Berlin, Dept Dermatol Venereol & Allergol, Freie Univ Berlin, Luisenstr 2, D-10117 Berlin, Germany
[8] Free Univ Berlin, Luisenstr 2, D-10117 Berlin, Germany
[9] Humboldt Univ, Luisenstr 2, D-10117 Berlin, Germany
[10] Johannes Gutenberg Univ Hosp Mainz, Inst Neuroradiol, Langenbeckstr 1, D-55131 Mainz, Germany
关键词
immunotherapy; melanoma; total tumour burden; volumetric segmentation; delta radiomics; prediction; response; survival; CHALLENGES;
D O I
10.3390/cancers16152669
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary The incidence of metastatic melanoma is rising, making it imperative to identify patients who do not benefit from immunotherapy. This study aimed to develop a radiomic biomarker, using segmentations from 146 baseline and 146 first follow-up CT scans, to predict best overall response, progression-free survival, and overall survival across various immunotherapies. We volumetrically segmented the total tumour load, excluding cerebral metastases. This study also examined whether reducing the number of segmented metastases per patient affects predictive accuracy. The findings suggest that delta radiomics could enhance the prediction of best overall response, progression-free survival, and overall survival in metastatic melanoma patients undergoing first-line immunotherapy. Although volumetric whole tumour load segmentation is complex, it may provide predictive benefits.Abstract Background: The prevalence of metastatic melanoma is increasing, necessitating the identification of patients who do not benefit from immunotherapy. This study aimed to develop a radiomic biomarker based on the segmentation of all metastases at baseline and the first follow-up CT for the endpoints best overall response (BOR), progression-free survival (PFS), and overall survival (OS), encompassing various immunotherapies. Additionally, this study investigated whether reducing the number of segmented metastases per patient affects predictive capacity. Methods: The total tumour load, excluding cerebral metastases, from 146 baseline and 146 first follow-up CTs of melanoma patients treated with first-line immunotherapy was volumetrically segmented. Twenty-one random forest models were trained and compared for the endpoints BOR; PFS at 6, 9, and 12 months; and OS at 6, 9, and 12 months, using as input either only clinical parameters, whole-tumour-load delta radiomics plus clinical parameters, or delta radiomics from the largest ten metastases plus clinical parameters. Results: The whole-tumour-load delta radiomics model performed best for BOR (AUC 0.81); PFS at 6, 9, and 12 months (AUC 0.82, 0.80, and 0.77); and OS at 6 months (AUC 0.74). The model using delta radiomics from the largest ten metastases performed best for OS at 9 and 12 months (AUC 0.71 and 0.75). Although the radiomic models were numerically superior to the clinical model, statistical significance was not reached. Conclusions: The findings indicate that delta radiomics may offer additional value for predicting BOR, PFS, and OS in metastatic melanoma patients undergoing first-line immunotherapy. Despite its complexity, volumetric whole-tumour-load segmentation could be advantageous.
引用
收藏
页数:12
相关论文
共 32 条
[1]   Delta-radiomics in cancer immunotherapy response prediction: A systematic review [J].
Abbas, Engy ;
Fanni, Salvatore Claudio ;
Bandini, Claudio ;
Francischello, Roberto ;
Febi, Maria ;
Aghakhanyan, Gayane ;
Ambrosini, Ilaria ;
Faggioni, Lorenzo ;
Cioni, Dania ;
Lencioni, Riccardo Antonio ;
Neri, Emanuele .
EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2023, 11
[2]   Cancer immunotherapy efficacy and patients' sex: a systematic review and meta-analysis [J].
Conforti, Fabio ;
Pala, Laura ;
Bagnardi, Vincenzo ;
De Pas, Tommaso ;
Martinetti, Marco ;
Viale, Giuseppe ;
Gelber, Richard D. ;
Goldhirsch, Aron .
LANCET ONCOLOGY, 2018, 19 (06) :737-746
[3]   Early Readout on Overall Survival of Patients With Melanoma Treated With Immunotherapy Using a Novel Imaging Analysis [J].
Dercle, Laurent ;
Zhao, Binsheng ;
Gonen, Mithat ;
Moskowitz, Chaya S. ;
Firas, Ahmed ;
Beylergil, Volkan ;
Connors, Dana E. ;
Yang, Hao ;
Lu, Lin ;
Fojo, Tito ;
Carvajal, Richard ;
Karovic, Sanja ;
Maitland, Michael L. ;
Goldmacher, Gregory, V ;
Oxnard, Geoffrey R. ;
Postow, Michael A. ;
Schwartz, Lawrence H. .
JAMA ONCOLOGY, 2022, 8 (03) :385-392
[4]   Metastatic melanoma: pretreatment contrast-enhanced CT texture parameters as predictive biomarkers of survival in patients treated with pembrolizumab [J].
Durot, Carole ;
Mule, Sebastien ;
Soyer, Philippe ;
Marchal, Aude ;
Grange, Florent ;
Hoeffel, Christine .
EUROPEAN RADIOLOGY, 2019, 29 (06) :3183-3191
[5]   Therapeutic and Adverse Effect of Anti-PD1 Immunotherapy in Melanoma: A Retrospective, Single-Institute Study of 222 Patients [J].
Eikenes, Grethe ;
Liszkay, Gabriella ;
Balatoni, Timea ;
Czirbesz, Kata ;
Hunyadi, Karen ;
Kozeki, Zsofia ;
Kispal, Mihaly Tamas ;
Baranyai, Fanni ;
Danyi, Timea ;
Bocs, Katalin ;
Kenessey, Istvan .
CANCERS, 2023, 15 (15)
[6]   New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) [J].
Eisenhauer, E. A. ;
Therasse, P. ;
Bogaerts, J. ;
Schwartz, L. H. ;
Sargent, D. ;
Ford, R. ;
Dancey, J. ;
Arbuck, S. ;
Gwyther, S. ;
Mooney, M. ;
Rubinstein, L. ;
Shankar, L. ;
Dodd, L. ;
Kaplan, R. ;
Lacombe, D. ;
Verweij, J. .
EUROPEAN JOURNAL OF CANCER, 2009, 45 (02) :228-247
[7]   Outcome Prediction at Patient Level Derived from Pre-Treatment 18F-FDG PET Due to Machine Learning in Metastatic Melanoma Treated with Anti-PD1 Treatment [J].
Flaus, Anthime ;
Habouzit, Vincent ;
de Leiris, Nicolas ;
Vuillez, Jean-Philippe ;
Leccia, Marie-Therese ;
Simonson, Mathilde ;
Perrot, Jean-Luc ;
Cachin, Florent ;
Prevot, Nathalie .
DIAGNOSTICS, 2022, 12 (02)
[8]   An Informative Review of Radiomics Studies on Cancer Imaging: The Main Findings, Challenges and Limitations of the Methodologies [J].
Fusco, Roberta ;
Granata, Vincenza ;
Simonetti, Igino ;
Setola, Sergio Venanzio ;
Iasevoli, Maria Assunta Daniela ;
Tovecci, Filippo ;
Lamanna, Ciro Michele Paolo ;
Izzo, Francesco ;
Pecori, Biagio ;
Petrillo, Antonella .
CURRENT ONCOLOGY, 2024, 31 (01) :403-424
[9]   Melanoma Staging: American Joint Committee on Cancer (AJCC) 8th Edition and Beyond [J].
Gershenwald, Jeffrey E. ;
Scolyer, Richard A. .
ANNALS OF SURGICAL ONCOLOGY, 2018, 25 (08) :2105-2110
[10]   Exploring CT Texture Parameters as Predictive and Response Imaging Biomarkers of Survival in Patients With Metastatic Melanoma Treated With PD-1 Inhibitor Nivolumab: A Pilot Study Using a Delta-Radiomics Approach [J].
Guerrisi, Antonino ;
Russillo, Michelangelo ;
Loi, Emiliano ;
Ganeshan, Balaji ;
Ungania, Sara ;
Desiderio, Flora ;
Bruzzaniti, Vicente ;
Falcone, Italia ;
Renna, Davide ;
Ferraresi, Virginia ;
Caterino, Mauro ;
Solivetti, Francesco Maria ;
Cognetti, Francesco ;
Morrone, Aldo .
FRONTIERS IN ONCOLOGY, 2021, 11