Client selection and resource scheduling in reliable federated learning for UAV-assisted vehicular networks

被引:1
|
作者
Zhao, Hongbo [1 ]
Geng, Liwei [1 ]
Feng, Wenquan [1 ]
Zhou, Changming [1 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; Vehicular edge computing; Resource management; Reinforcement learning; Optimization techniques; EFFICIENT; ALLOCATION; COMMUNICATION; OPTIMIZATION; NAVIGATION; INTERNET;
D O I
10.1016/j.cja.2024.06.023
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Federated Learning (FL), a promising deep learning paradigm extensively deployed in Vehicular Edge Computing Networks (VECN), allows a distributed approach to train datasets of nodes locally, e.g., for mobile vehicles, and exchanges model parameters to obtain an accurate model without raw data transmission. However, the existence of malicious vehicular nodes as well as the inherent heterogeneity of the vehicles hinders the attainment of accurate models. Moreover, the local model training and model parameter transmission during FL exert a notable energy burden on vehicles constrained in resources. In view of this, we investigate FL client selection and resource management problems in FL-enabled UAV-assisted Vehicular Networks (FLVN). We first devise a novel reputation-based client selection mechanism by integrating both data quality and computation capability metrics to enlist reliable high-performance vehicles. Further, to fortify the FL reliability, we adopt the consortium blockchain to oversee the reputation information, which boasts tamper-proof and interference-resistant qualities. Finally, we formulate the resource scheduling problem by jointly optimizing the computation capability, the transmission power, and the number of local training rounds, aiming to minimize the cost of clients while guaranteeing accuracy. To this end, we propose a reinforcement learning algorithm employing an asynchronous parallel network structure to achieve an optimized scheduling strategy. Simulation results show that our proposed client selection mechanism and scheduling algorithm can realize reliable FL with an accuracy of 0.96 and consistently outperform the baselines in terms of delay and energy consumption. (c) 2024 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:328 / 346
页数:19
相关论文
共 50 条
  • [31] Optimal Probabilistic Collaborative Caching in UAV-Assisted Vehicular Networks
    Zhao, Shuyuan
    Zhang, Yuan
    Zhu, Yongdong
    Zhao, Zhifeng
    Liu, Yuntao
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 377 - 382
  • [32] Throughput and energy efficiency maximization for UAV-assisted vehicular networks
    Bian, Hui
    Dai, Haibo
    Yang, Luxi
    PHYSICAL COMMUNICATION, 2020, 42
  • [33] Deep Reinforcement Learning for Scheduling and Offloading in UAV-Assisted Mobile Edge Networks
    Tian X.
    Miao P.
    Zhang L.
    Wireless Communications and Mobile Computing, 2023, 2023
  • [34] Learning Based Dynamic Resource Allocation in UAV-assisted Mobile Crowdsensing Networks
    Liu, Wenshuai
    Zhou, Yuzhi
    Fu, Yaru
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [35] Deep Reinforcement Learning Based Resource Management in UAV-Assisted IoT Networks
    Munaye, Yirga Yayeh
    Juang, Rong-Terng
    Lin, Hsin-Piao
    Tarekegn, Getaneh Berie
    Lin, Ding-Bing
    APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 20
  • [36] Joint Client Selection and Resource Allocation for Federated Learning in Mobile Edge Networks
    Luo, Long
    Cai, Qingqing
    Li, Zonghang
    Yu, Hongfang
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1218 - 1223
  • [37] Adaptive federated reinforcement learning for critical realtime communications in UAV assisted vehicular networks
    Hao, Jialin
    Naja, Rola
    Zeghlache, Djamal
    COMPUTER NETWORKS, 2024, 247
  • [38] Federated Learning Incentive Mechanism Setting in UAV-Assisted Space-Terrestrial Integration Networks
    Zhu, Chun
    Sui, Mengqi
    Zhao, Haitao
    Chen, Keqi
    Zhang, Tianyu
    Bao, Chongyu
    ELECTRONICS, 2024, 13 (06)
  • [39] Mobility-Aware Task Offloading and Resource Allocation in UAV-Assisted Vehicular Edge Computing Networks
    Chen, Long
    Du, Jiaqi
    Zhu, Xia
    DRONES, 2024, 8 (11)
  • [40] Geolocation-based UAV-assisted Caching Strategies in Vehicular Networks
    Gong, Ting
    Zhu, Qi
    JOURNAL OF INTERNET TECHNOLOGY, 2023, 24 (07): : 1457 - 1468