Identifying PFAS hotspots in surface waters of South Carolina using a new optimized total organic fluorine method and target LC-MS/MS

被引:3
作者
Forster, Alexandria L. B. [1 ]
Geiger, Thomas C. [1 ]
Pansari, Gina O. [1 ]
Justen, Patrick T. [1 ]
Richardson, Susan D. [1 ]
机构
[1] Univ South Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
关键词
PFAS; TOF; Total organic fluorine; LC-MS/MS; Liquid chromatography mass spectrometry; Per; and polyfluoroalkyl substances; FILM-FORMING FOAM; POLYFLUOROALKYL SUBSTANCES; PERFLUOROALKYL; PHARMACEUTICALS; CONTAMINANTS; GROUNDWATER; ENVIRONMENT; CHEMICALS;
D O I
10.1016/j.watres.2024.121570
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern due to their long persistence in the environment, toxicity, and widespread presence in humans and wildlife. Knowledge regarding the extent of PFAS contamination in the environment is limited due to the need for analytical methods that can reliably quantify all PFAS, since traditional target methods using liquid chromatography (LC)-mass spectrometry (MS) fail to capture many. For a more comprehensive analysis, a total organic fluorine (TOF) method can be used as a screening tool. We combined TOF analysis with target LC-MS/MS analysis to create a statewide PFAS hotspot map for surface waters throughout South Carolina. Thirty-eight of 40 locations sampled contained detectable concentrations of organic fluorine (above 100 ng/L). Of the 33 target PFAS analyzed using LC-MS/MS, the most prevalent were perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), and perfluorohexanesulfonate (PFHxS). On average, LC-MS/MS only accounted for 2 % of the TOF measured. Locations with high TOF did not necessarily correlate to high total quantified PFAS concentrations and vice-versa, demonstrating the limitations of target PFAS analysis and indicating that LC-MS may miss highly contaminated sites. Results suggest that future surveys should utilize TOF to more comprehensively capture PFAS in water bodies.
引用
收藏
页数:8
相关论文
共 53 条
  • [31] Trophodynamics of Per- and Polyfluoroalkyl Substances in the Food Web of a Large Atlantic Slope River
    Penland, Tiffany N.
    Cope, W. Gregory
    Kwak, Thomas J.
    Strynar, Mark J.
    Grieshaber, Casey A.
    Heise, Ryan J.
    Sessions, Forrest W.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (11) : 6800 - 6811
  • [32] Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina
    Petre, M-A
    Salk, K. R.
    Stapleton, H. M.
    Ferguson, P. L.
    Tait, G.
    Obenour, D. R.
    Knappe, D. R. U.
    Genereux, D. P.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 831
  • [33] Water Analysis: Emerging Contaminants and Current Issues
    Richardson, Susan D.
    Ternes, Thomas A.
    [J]. ANALYTICAL CHEMISTRY, 2022, 94 (01) : 382 - 416
  • [34] PIGE as a screening tool for Per- and polyfluorinated substances in papers and textiles
    Ritter, Evelyn E.
    Dickinson, Margaret E.
    Harron, John P.
    Lunderberg, David M.
    DeYoung, Paul A.
    Robel, Alix E.
    Field, Jennifer A.
    Peaslee, Graham F.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 407 : 47 - 54
  • [35] Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater
    Rizzo, Luigi
    Malato, Sixto
    Antakyali, Demet
    Beretsou, Vasiliki G.
    Dolic, Maja B.
    Gernjak, Wolfgang
    Heath, Ester
    Ivancev-Tumbas, Ivana
    Karaolia, Popi
    Lado Ribeiro, Ana R.
    Mascolo, Giuseppe
    McArdell, Christa S.
    Schaar, Heidemarie
    Silva, Adrian M. T.
    Fatta-Kassinos, Despo
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 655 : 986 - 1008
  • [36] Closing the Mass Balance on Fluorine on Papers and Textiles
    Robel, Alix E.
    Marshall, Kristin
    Dickinson, Margaret
    Lunderberg, David
    Butt, Craig
    Peaslee, Graham
    Stapleton, Heather M.
    Field, Jennifer A.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (16) : 9022 - 9032
  • [37] Presumptive Contamination: A New Approach to PFAS Contamination Based on Likely Sources
    Salvatore, Derrick
    Mok, Kira
    Garrett, Kimberly K.
    Poudrier, Grace
    Brown, Phil
    Birnbaum, Linda S.
    Goldenman, Gretta
    Miller, Mark F.
    Patton, Sharyle
    Poehlein, Maddy
    Varshavsky, Julia
    Cordner, Alissa
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2022, 9 (11) : 983 - 990
  • [38] Total Fluorine Measurements in Food Packaging: How Do Current Methods Perform?
    Schultes, Lara
    Peaslee, Graham F.
    Brockman, John D.
    Majumdar, Ashabari
    McGuinness, Sean R.
    Wilkinson, John T.
    Sandblom, Oskar
    Ngwenyama, Ruth A.
    Benskin, Jonathan P.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2019, 6 (02) : 73 - 78
  • [39] Per- and polyfluoroalkyl substances and fluorine mass balance in cosmetic products from the Swedish market: implications for environmental emissions and human exposure
    Schultes, Lara
    Vestergren, Robin
    Volkova, Kristina
    Westberg, Emelie
    Jacobson, Therese
    Benskin, Jonathan P.
    [J]. ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2018, 20 (12) : 1680 - 1690
  • [40] Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications
    Smalling, Kelly L.
    Romanok, Kristin M.
    Bradley, Paul M.
    Morriss, Mathew C.
    Gray, James L.
    Kanagy, Leslie K.
    Gordon, Stephanie E.
    Williams, Brianna M.
    Breitmeyer, Sara E.
    Jones, Daniel K.
    DeCicco, Laura A.
    Eagles-Smith, Collin A.
    Wagner, Tyler
    [J]. ENVIRONMENT INTERNATIONAL, 2023, 178