Salmonella infection impacts host proteome thermal stability

被引:2
作者
Birk, Marlene S. [1 ]
Walch, Philipp [2 ]
Baykara, Tarik [1 ]
Sefried, Stephanie [1 ]
Amelang, Jan [3 ]
Buerova, Elena [3 ]
Breuer, Ingrid [1 ]
Vervoots, Jorg [3 ]
Typas, Athanasios [2 ]
Savitski, Mikhail M. [2 ]
Mateus, Andre [2 ,4 ,5 ]
Selkrig, Joel [1 ,2 ]
机构
[1] RWTH Univ Hosp, Inst Med Microbiol, D-52074 Aachen, Germany
[2] European Mol Biol Lab EMBL, Genome Biol Unit, Meyerhofstr 1, D-69117 Heidelberg, Germany
[3] RWTH Univ Hosp, Inst Biochem & Mol Biol, D-52074 Aachen, Germany
[4] Umea Univ, Dept Chem, S-90736 Umea, Sweden
[5] Lab Mol Infect Med Sweden MIMS, S-90736 Umea, Sweden
关键词
Salmonella; Bacterial pathogenesis; T3SS effector; Proteomics; Protein Thermal Stability; IDENTIFICATION; ITACONATE; SUCCINATE; EFFECTORS; REVEALS; STEC;
D O I
10.1016/j.ejcb.2024.151448
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Intracellular bacterial pathogens hijack the protein machinery of infected host cells to evade their defenses and cultivate a favorable intracellular niche. The intracellular pathogen Salmonella enterica subsp. Typhimurium (STm) achieves this by injecting a cocktail of effector proteins into host cells that modify the activity of target host proteins. Yet, proteome-wide approaches to systematically map changes in host protein function during infection have remained challenging. Here we adapted a functional proteomics approach - Thermal-Proteome Profiling (TPP) - to systematically assess proteome-wide changes in host protein abundance and thermal stability throughout an STm infection cycle. By comparing macrophages treated with live or heat-killed STm, we observed that most host protein abundance changes occur independently of STm viability. In contrast, a large portion of host protein thermal stability changes were specific to infection with live STm. This included pronounced thermal stability changes in proteins linked to mitochondrial function (Acod1/Irg1, Cox6c, Samm50, Vdac1, and mitochondrial respiratory chain complex proteins), as well as the interferon-inducible protein with tetratricopeptide repeats, Ifit1. Integration of our TPP data with a publicly available STm-host protein-protein interaction database led us to discover that the secreted STm effector kinase, SteC, thermally destabilizes and phosphorylates the ribosomal preservation factor Serbp1. In summary, this work emphasizes the utility of measuring protein thermal stability during infection to accelerate the discovery of novel molecular interactions at the host-pathogen interface.
引用
收藏
页数:10
相关论文
共 57 条
[1]   SERBP1 affects homologous recombination-mediated DNA repair by regulation of CtIP translation during S phase [J].
Ahn, Jang-Won ;
Kim, Sunjik ;
Na, Wooju ;
Baek, Su-Jin ;
Kim, Jeong-Hwan ;
Min, Keehong ;
Yeom, Jeonghun ;
Kwak, Hoyun ;
Jeong, Sunjoo ;
Lee, Cheolju ;
Kim, Seon-Young ;
Choi, Cheol Yong .
NUCLEIC ACIDS RESEARCH, 2015, 43 (13) :6321-6333
[2]   Pervasive Protein Thermal Stability Variation during the Cell Cycle [J].
Becher, Isabelle ;
Andres-Pons, Amparo ;
Romanov, Natalie ;
Stein, Frank ;
Schramm, Maike ;
Baudin, Florence ;
Helm, Dominic ;
Kurzawa, Nils ;
Mateus, Andre ;
Mackmull, Marie-Therese ;
Typas, Athanasios ;
Mueller, Christoph W. ;
Bork, Peer ;
Beck, Martin ;
Savitski, Mikhail M. .
CELL, 2018, 173 (06) :1495-+
[3]  
Becher I, 2016, NAT CHEM BIOL, V12, P908, DOI [10.1038/NCHEMBIO.2185, 10.1038/nchembio.2185]
[4]   The Salmonella Type III Effector SspH2 Specifically Exploits the NLR Co-chaperone Activity of SGT1 to Subvert Immunity [J].
Bhavsar, Amit P. ;
Brown, Nat F. ;
Stoepel, Jan ;
Wiermer, Marcel ;
Martin, Dale D. O. ;
Hsu, Karolynn J. ;
Imami, Koshi ;
Ross, Colin J. ;
Hayden, Michael R. ;
Foster, Leonard J. ;
Li, Xin ;
Hieter, Phil ;
Finlay, B. Brett .
PLOS PATHOGENS, 2013, 9 (07)
[5]   Structures of translational inactive mammalian ribosomes [J].
Brown, Alan ;
Baird, Matthew R. ;
Yip, Matthew C. J. ;
Murray, Jason ;
Shao, Sichen .
ELIFE, 2018, 7
[6]   Syntaxin 3 SPI-2 dependent crosstalk facilitates the division of Salmonella containing vacuole [J].
Chatterjee, Ritika ;
Nair, Abhilash Vijay ;
Singh, Anmol ;
Mehta, Nishi ;
Setty, Subba Rao Gangi ;
Chakravortty, Dipshikha .
TRAFFIC, 2023, 24 (07) :270-283
[7]   Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against Salmonella [J].
Chen, Meixin ;
Sun, Hui ;
Boot, Maikel ;
Shao, Lin ;
Chang, Shu-Jung ;
Wang, Weiwei ;
Lam, Tukiet T. ;
Lara-Tejero, Maria ;
Rego, E. Hesper ;
Galan, Jorge E. .
SCIENCE, 2020, 369 (6502) :450-+
[8]   Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels [J].
Cordes, Thekla ;
Wallace, Martina ;
Michelucci, Alessandro ;
Divakaruni, Ajit S. ;
Sapcariu, Sean C. ;
Sousa, Carole ;
Koseki, Haruhiko ;
Cabrales, Pedro ;
Murphy, Anne N. ;
Hiller, Karsten ;
Metallo, Christian M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (27) :14274-14284
[9]   1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data [J].
Cox, Juergen ;
Mann, Matthias .
BMC BIOINFORMATICS, 2012, 13 :S12
[10]   BioID screen of Salmonella type 3 secreted effectors reveals host factors involved in vacuole positioning and stability during infection [J].
D'Costa, Vanessa M. ;
Coyaud, Etienne ;
Boddy, Kirsten C. ;
Laurent, Estelle M. N. ;
St-Germain, Jonathan ;
Li, Taoyingnan ;
Grinstein, Sergio ;
Raught, Brian ;
Brumell, John H. .
NATURE MICROBIOLOGY, 2019, 4 (12) :2511-2522