A semantic visual SLAM towards object selection and tracking optimization

被引:0
|
作者
Sun, Tian [1 ,2 ]
Cheng, Lei [2 ]
Hu, Yaqi [2 ]
Yuan, Xiaoping [3 ]
Liu, Yong [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
基金
美国国家科学基金会;
关键词
Pose optimization; Medium-term tracking; Dynamic target detection; Simultaneous localization and mapping; MONOCULAR SLAM;
D O I
10.1007/s10489-024-05761-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simultaneous localization and mapping (SLAM) technology has garnered considerable attention as a pivotal component for the autonomous navigation of intelligent mobile vehicles. Integrating target detection and target tracking technology into SLAM enhances scene perception, resulting in a more resilient SLAM system. Consequently, this article presents a pose optimization algorithm based on image segmentation, coupled with object detection technology, to achieve superior multi-frame association feature matching. Subsequently, this paper proposes a method for selecting the most stable targets to better conduct pose optimization. Finally, experimental validation was conducted on five sequences from the TUM dataset. We conducted tracking performance experiments to demonstrate the necessity of selecting stable targets for pose optimization. Afterwards, we carried out a comprehensive comparison with the current state-of-the-art SLAM implementations in terms of accuracy and robustness. The average absolute trajectory error of our method in the dynamic benchmark datasets is similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}94.14% lower than that of ORB-SLAM2, similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}61.90% lower than that of RS-SLAM, and similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}80.89% lower than that of DS-SLAM. At the end of the experiment, the process performance of the proposed method is demonstrated. The experiments collectively showcase the system's capability to deliver outstanding results.
引用
收藏
页码:11311 / 11324
页数:14
相关论文
共 50 条
  • [41] CD-SLAM: A Real-Time Stereo Visual-Inertial SLAM for Complex Dynamic Environments With Semantic and Geometric Information
    Wen, Shuhuan
    Tao, Sheng
    Liu, Xin
    Babiarz, Artur
    Yu, F. Richard
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 8
  • [42] EGLT-SLAM: Real-Time Visual-Inertial SLAM Based on Entropy-Guided Line Tracking
    Jia, Xiang
    Ning, Yipeng
    Chai, Dashuai
    Fan, Jinlong
    Yang, Zhen
    Xi, Xiaoming
    Zhu, Feng
    Wang, Weiwei
    IEEE SENSORS JOURNAL, 2024, 24 (20) : 32757 - 32771
  • [43] Angular Tracking Consistency Guided Fast Feature Association for Visual-Inertial SLAM
    Xie, Hongle
    Deng, Tianchen
    Wang, Jingchuan
    Chen, Weidong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [44] Towards Multi-Robot Visual Graph-SLAM for Autonomous Marine Vehicles
    Bonin-Font, Francisco
    Burguera, Antoni
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (06)
  • [45] DOG-SLAM: Enhancing Dynamic Visual SLAM Precision Through GMM-Based Dynamic Object Removal and ORB-Boost
    Long, Jiming
    Wang, Fei
    Liu, Mingyang
    Wang, Yu
    Zou, Qiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [46] AHY-SLAM: Toward Faster and More Accurate Visual SLAM in Dynamic Scenes Using Homogenized Feature Extraction and Object Detection Method
    Gong, Han
    Gong, Lei
    Ma, Tianbing
    Sun, Zhicheng
    Li, Liang
    SENSORS, 2023, 23 (09)
  • [47] A Low-Rank CNN Architecture for Real-Time Semantic Segmentation in Visual SLAM Applications
    Falaschetti, Laura
    Manoni, Lorenzo
    Turchetti, Claudio
    IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2022, 3 : 115 - 133
  • [48] LiDAR-Visual SLAM with Integrated Semantic and Texture Information for Enhanced Ecological Monitoring Vehicle Localization
    Lu, Yiqing
    Zhao, Liutao
    Zhao, Qiankun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (01): : 1401 - 1416
  • [49] Real-Time Visual-Inertial Localization Using Semantic Segmentation Towards Dynamic Environments
    Zhao, Xinyang
    Wang, Changhong
    Ang, Marcelo H., Jr.
    IEEE ACCESS, 2020, 8 (08): : 155047 - 155059
  • [50] An Fusion SLAM Method for LiDAR Visual and IMU Based on Factor Map Elimination Optimization
    Yuan G.-S.
    Qi Y.-S.
    Liu L.-Q.
    Su J.-Q.
    Zhang L.-J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (11): : 3042 - 3052