A semantic visual SLAM towards object selection and tracking optimization

被引:0
|
作者
Sun, Tian [1 ,2 ]
Cheng, Lei [2 ]
Hu, Yaqi [2 ]
Yuan, Xiaoping [3 ]
Liu, Yong [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
基金
美国国家科学基金会;
关键词
Pose optimization; Medium-term tracking; Dynamic target detection; Simultaneous localization and mapping; MONOCULAR SLAM;
D O I
10.1007/s10489-024-05761-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simultaneous localization and mapping (SLAM) technology has garnered considerable attention as a pivotal component for the autonomous navigation of intelligent mobile vehicles. Integrating target detection and target tracking technology into SLAM enhances scene perception, resulting in a more resilient SLAM system. Consequently, this article presents a pose optimization algorithm based on image segmentation, coupled with object detection technology, to achieve superior multi-frame association feature matching. Subsequently, this paper proposes a method for selecting the most stable targets to better conduct pose optimization. Finally, experimental validation was conducted on five sequences from the TUM dataset. We conducted tracking performance experiments to demonstrate the necessity of selecting stable targets for pose optimization. Afterwards, we carried out a comprehensive comparison with the current state-of-the-art SLAM implementations in terms of accuracy and robustness. The average absolute trajectory error of our method in the dynamic benchmark datasets is similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}94.14% lower than that of ORB-SLAM2, similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}61.90% lower than that of RS-SLAM, and similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}80.89% lower than that of DS-SLAM. At the end of the experiment, the process performance of the proposed method is demonstrated. The experiments collectively showcase the system's capability to deliver outstanding results.
引用
收藏
页码:11311 / 11324
页数:14
相关论文
共 50 条
  • [31] GOReloc: Graph-Based Object-Level Relocalization for Visual SLAM
    Wang, Yutong
    Jiang, Chaoyang
    Chen, Xieyuanli
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (10): : 8234 - 8241
  • [32] Semantic SLAM system for mobile robots based on large visual model in complex environments
    Zheng, Chao
    Zhang, Peng
    Li, Yanan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [33] Vehicle Visual SLAM in Dynamic Scenes Based on Semantic Segmentation and Motion Consistency Constraints
    Huang S.
    Hu M.
    Zhou Y.
    Yin Z.
    Qin X.
    Bian Y.
    Jia Q.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (10): : 1503 - 1510
  • [34] Visual SLAM Based on Improved Line Filtering Decision and Weight Optimization
    Cao, Yibo
    Luo, Zehao
    Deng, Zhenyu
    IEEE ACCESS, 2024, 12 : 153832 - 153840
  • [35] DEG-SLAM: a dynamic visual RGB-D SLAM based on object detection and geometric constraints for degenerate motion
    Pan, Guangen
    Cao, Songyin
    Lv, Shuang
    Yi, Yang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (02)
  • [36] DL-SLOT: Tightly-Coupled Dynamic LiDAR SLAM and 3D Object Tracking Based on Collaborative Graph Optimization
    Tian, Xuebo
    Zhu, Zhongyang
    Zhao, Junqiao
    Tian, Gengxuan
    Ye, Chen
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 1017 - 1027
  • [37] RVD-SLAM: A Real-Time Visual SLAM Toward Dynamic Environments Based on Sparsely Semantic Segmentation and Outlier Prior
    Zhou, Yao
    Tao, Fazhan
    Fu, Zhumu
    Zhu, Longlong
    Ma, Haoxiang
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 30773 - 30785
  • [38] SG-SLAM: A Real-Time RGB-D Visual SLAM Toward Dynamic Scenes With Semantic and Geometric Information
    Cheng, Shuhong
    Sun, Changhe
    Zhang, Shijun
    Zhang, Dianfan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [39] SG-SLAM: A Real-Time RGB-D Visual SLAM Toward Dynamic Scenes With Semantic and Geometric Information
    Cheng, Shuhong
    Sun, Changhe
    Zhang, Shijun
    Zhang, Dianfan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [40] SG-SLAM: A Real-Time RGB-D Visual SLAM Toward Dynamic Scenes With Semantic and Geometric Information
    Cheng, Shuhong
    Sun, Changhe
    Zhang, Shijun
    Zhang, Dianfan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72