A semantic visual SLAM towards object selection and tracking optimization

被引:0
|
作者
Sun, Tian [1 ,2 ]
Cheng, Lei [2 ]
Hu, Yaqi [2 ]
Yuan, Xiaoping [3 ]
Liu, Yong [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
基金
美国国家科学基金会;
关键词
Pose optimization; Medium-term tracking; Dynamic target detection; Simultaneous localization and mapping; MONOCULAR SLAM;
D O I
10.1007/s10489-024-05761-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simultaneous localization and mapping (SLAM) technology has garnered considerable attention as a pivotal component for the autonomous navigation of intelligent mobile vehicles. Integrating target detection and target tracking technology into SLAM enhances scene perception, resulting in a more resilient SLAM system. Consequently, this article presents a pose optimization algorithm based on image segmentation, coupled with object detection technology, to achieve superior multi-frame association feature matching. Subsequently, this paper proposes a method for selecting the most stable targets to better conduct pose optimization. Finally, experimental validation was conducted on five sequences from the TUM dataset. We conducted tracking performance experiments to demonstrate the necessity of selecting stable targets for pose optimization. Afterwards, we carried out a comprehensive comparison with the current state-of-the-art SLAM implementations in terms of accuracy and robustness. The average absolute trajectory error of our method in the dynamic benchmark datasets is similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}94.14% lower than that of ORB-SLAM2, similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}61.90% lower than that of RS-SLAM, and similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}80.89% lower than that of DS-SLAM. At the end of the experiment, the process performance of the proposed method is demonstrated. The experiments collectively showcase the system's capability to deliver outstanding results.
引用
收藏
页码:11311 / 11324
页数:14
相关论文
共 50 条
  • [21] Real-Time Dynamic Visual-Inertial SLAM and Object Tracking Based on Lightweight Deep Feature Extraction Matching
    Zhang, Hanxuan
    Huo, Ju
    Huang, Yulong
    Liu, Qi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [22] Adaptive Keyframe Selection Strategy of Visual SLAM in Complex Poses
    Zu, Linan
    Wei, Chengrui
    Sun, Qiqi
    Zhang, Mingyue
    Sheng, Ning
    Ge, Shuzhi Sam
    IEEE SENSORS JOURNAL, 2025, 25 (01) : 1756 - 1767
  • [23] A Novel Texture-Less Object Oriented Visual SLAM System
    Dong, Yanchao
    Wang, Senbo
    Yue, Jiguang
    Chen, Ce
    He, Shibo
    Wang, Haotian
    He, Bin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (01) : 36 - 49
  • [24] Empty Cities: A Dynamic-Object-Invariant Space for Visual SLAM
    Bescos, Berta
    Cadena, Cesar
    Neira, Jose
    IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (02) : 433 - 451
  • [25] Towards An Indoor Navigation System Using Monocular Visual SLAM
    Bajpai, Akshat
    Amir-Mohammadian, Sepehr
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 520 - 525
  • [26] A Visual SLAM With Tightly Coupled Integration of Multiobject Tracking for Production Workshop
    Gou, Rongsong
    Chen, Guangzhu
    Pu, Xin
    Liao, Xiaojuan
    Chen, Runji
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19949 - 19962
  • [27] A Survey of Visual SLAM in Dynamic Environment: The Evolution From Geometric to Semantic Approaches
    Wang, Yanan
    Tian, Yaobin
    Chen, Jiawei
    Xu, Kun
    Ding, Xilun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [28] DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM
    Bescos, Berta
    Campos, Carlos
    Tardos, Juan D.
    Neira, Jose
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 5191 - 5198
  • [29] Visual SLAM Based on Semantic Segmentation and Geometric Constraints for Dynamic Indoor Environments
    Yang, Shiqiang
    Zhao, Cheng
    Wu, Zhengkun
    Wang, Yan
    Wang, Guodong
    Li, Dexin
    IEEE ACCESS, 2022, 10 : 69636 - 69649
  • [30] Anchor Selection for SLAM Based on Graph Topology and Submodular Optimization
    Chen, Yongbo
    Zhao, Liang
    Zhang, Yanhao
    Huang, Shoudong
    Dissanayake, Gamini
    IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (01) : 329 - 350