A semantic visual SLAM towards object selection and tracking optimization

被引:0
|
作者
Sun, Tian [1 ,2 ]
Cheng, Lei [2 ]
Hu, Yaqi [2 ]
Yuan, Xiaoping [3 ]
Liu, Yong [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
基金
美国国家科学基金会;
关键词
Pose optimization; Medium-term tracking; Dynamic target detection; Simultaneous localization and mapping; MONOCULAR SLAM;
D O I
10.1007/s10489-024-05761-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simultaneous localization and mapping (SLAM) technology has garnered considerable attention as a pivotal component for the autonomous navigation of intelligent mobile vehicles. Integrating target detection and target tracking technology into SLAM enhances scene perception, resulting in a more resilient SLAM system. Consequently, this article presents a pose optimization algorithm based on image segmentation, coupled with object detection technology, to achieve superior multi-frame association feature matching. Subsequently, this paper proposes a method for selecting the most stable targets to better conduct pose optimization. Finally, experimental validation was conducted on five sequences from the TUM dataset. We conducted tracking performance experiments to demonstrate the necessity of selecting stable targets for pose optimization. Afterwards, we carried out a comprehensive comparison with the current state-of-the-art SLAM implementations in terms of accuracy and robustness. The average absolute trajectory error of our method in the dynamic benchmark datasets is similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}94.14% lower than that of ORB-SLAM2, similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}61.90% lower than that of RS-SLAM, and similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}80.89% lower than that of DS-SLAM. At the end of the experiment, the process performance of the proposed method is demonstrated. The experiments collectively showcase the system's capability to deliver outstanding results.
引用
收藏
页码:11311 / 11324
页数:14
相关论文
共 50 条
  • [1] Fusing Semantic Segmentation and Object Detection for Visual SLAM in Dynamic Scenes
    Yu, Peilin
    Guo, Chi
    Liu, Yang
    Zhang, Huyin
    PROCEEDINGS OF 27TH ACM SYMPOSIUM ON VIRTUAL REALITY SOFTWARE AND TECHNOLOGY, VRST 2021, 2021,
  • [2] A Visual-Inertial Dynamic Object Tracking SLAM Tightly Coupled System
    Zhang, Hanxuan
    Wang, Dingyi
    Huo, Ju
    IEEE SENSORS JOURNAL, 2023, 23 (17) : 19905 - 19917
  • [3] Semantic visual SLAM in dynamic environment
    Wen, Shuhuan
    Li, Pengjiang
    Zhao, Yongjie
    Zhang, Hong
    Sun, Fuchun
    Wang, Zhe
    AUTONOMOUS ROBOTS, 2021, 45 (04) : 493 - 504
  • [4] Semantic visual SLAM in dynamic environment
    Shuhuan Wen
    Pengjiang Li
    Yongjie Zhao
    Hong Zhang
    Fuchun Sun
    Zhe Wang
    Autonomous Robots, 2021, 45 : 493 - 504
  • [5] PSPNet-SLAM: A Semantic SLAM Detect Dynamic Object by Pyramid Scene Parsing Network
    Long, Xudong
    Zhang, Weiwei
    Zhao, Bo
    IEEE ACCESS, 2020, 8 : 214685 - 214695
  • [6] SOF-SLAM: A Semantic Visual SLAM for Dynamic Environments
    Cui, Linyan
    Ma, Chaowei
    IEEE ACCESS, 2019, 7 : 166528 - 166539
  • [7] Object Detection-Based Visual SLAM Optimization Method for Dynamic Scene
    Deng, Min
    Hu, Jiwei
    Wen, Junxiang
    Zhang, Xiaomei
    Jin, Qiwen
    IEEE SENSORS JOURNAL, 2025, 25 (09) : 16480 - 16488
  • [8] DOE-SLAM: Dynamic Object Enhanced Visual SLAM
    Hu, Xiao
    Lang, Jochen
    SENSORS, 2021, 21 (09)
  • [9] An Overview on Visual SLAM: From Tradition to Semantic
    Chen, Weifeng
    Shang, Guangtao
    Ji, Aihong
    Zhou, Chengjun
    Wang, Xiyang
    Xu, Chonghui
    Li, Zhenxiong
    Hu, Kai
    REMOTE SENSING, 2022, 14 (13)
  • [10] Accurate Object Association and Pose Updating for Semantic SLAM
    Chen, Kaiqi
    Liu, Jialing
    Chen, Qinying
    Wang, Zhenhua
    Zhang, Jianhua
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 25169 - 25179