THE HYDROSTATIC LIMIT OF THE BERIS-EDWARDS SYSTEM IN DIMENSION TWO

被引:0
|
作者
Li, Xingyu [1 ,2 ]
Paicu, Marius [3 ]
Zarnescu, Arghir [1 ,4 ,5 ]
机构
[1] Basque Ctr Appl Math, BCAM, Mazarredo 14, E-48009 Bilbao, Bizkaia, Spain
[2] Univ Paul Sabatier, Inst Math Toulouse, Toulouse, France
[3] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
[4] Basque Fdn Sci, IKERBASQUE, Pl Euskadi 5, Bilbao 48009, Spain
[5] Romanian Acad, Simion Stoilow Inst Math, POB 1-764, RO-014700 Bucharest, Romania
关键词
Beris-Edwards system; liquid crystals; Q-tensor; hydrostatic limit; NAVIER-STOKES; EXISTENCE; FLOW;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the scaled anisotropic co-rotational Beris-Edwards system modeling the hydrodynamic motion of nematic liquid crystals in dimension two. We prove the global well-posedness with small analytic data in a thin strip domain. Moreover, we justify the limit to a system involving the hydrostatic Navier-Stokes system with analytic data and prove the convergence.
引用
收藏
页码:1701 / 1732
页数:32
相关论文
共 34 条