THE HYDROSTATIC LIMIT OF THE BERIS-EDWARDS SYSTEM IN DIMENSION TWO

被引:0
|
作者
Li, Xingyu [1 ,2 ]
Paicu, Marius [3 ]
Zarnescu, Arghir [1 ,4 ,5 ]
机构
[1] Basque Ctr Appl Math, BCAM, Mazarredo 14, E-48009 Bilbao, Bizkaia, Spain
[2] Univ Paul Sabatier, Inst Math Toulouse, Toulouse, France
[3] Univ Bordeaux, Inst Math Bordeaux, F-33405 Talence, France
[4] Basque Fdn Sci, IKERBASQUE, Pl Euskadi 5, Bilbao 48009, Spain
[5] Romanian Acad, Simion Stoilow Inst Math, POB 1-764, RO-014700 Bucharest, Romania
关键词
Beris-Edwards system; liquid crystals; Q-tensor; hydrostatic limit; NAVIER-STOKES; EXISTENCE; FLOW;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the scaled anisotropic co-rotational Beris-Edwards system modeling the hydrodynamic motion of nematic liquid crystals in dimension two. We prove the global well-posedness with small analytic data in a thin strip domain. Moreover, we justify the limit to a system involving the hydrostatic Navier-Stokes system with analytic data and prove the convergence.
引用
收藏
页码:1701 / 1732
页数:32
相关论文
共 34 条
  • [1] Suitable Weak Solutions for the Co-rotational Beris-Edwards System in Dimension Three
    Du, Hengrong
    Hu, Xianpeng
    Wang, Changyou
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 238 (02) : 749 - 803
  • [2] Global Existence of Strong Solutions for Beris-Edwards's Liquid Crystal System in Dimension Three
    Luo, Yongshun
    Li, Sirui
    Zhao, Fangxin
    MATHEMATICS, 2019, 7 (10)
  • [3] THE PARABOLIC FRACTAL DIMENSION FOR THE CO-ROTATIONAL BERIS-EDWARDS SYSTEM
    Zuo, Zhongbao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (03): : 1301 - 1318
  • [4] Global well-posedness of the two dimensional Beris-Edwards system with general Laudau-de Gennes free energy
    Liu, Yuning
    Wu, Hao
    Xu, Xiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (12) : 6958 - 7001
  • [5] An Elementary Proof of Eigenvalue Preservation for the Co-rotational Beris-Edwards System
    Contreras, Andres
    Xu, Xiang
    Zhang, Wujun
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (02) : 789 - 801
  • [6] An Elementary Proof of Eigenvalue Preservation for the Co-rotational Beris-Edwards System
    Andres Contreras
    Xiang Xu
    Wujun Zhang
    Journal of Nonlinear Science, 2019, 29 : 789 - 801
  • [7] The Minkowski dimension of suitable weak solutions of the 3D co-rotational Beris-Edwards system
    Zuo, Zhongbao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [8] Dynamics and Flow Effects in the Beris-Edwards System Modeling Nematic Liquid Crystals
    Wu, Hao
    Xu, Xiang
    Zarnescu, Arghir
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 231 (02) : 1217 - 1267
  • [9] ON THE CONVERGENCE OF AN IEQ-BASED FIRST-ORDER SEMI-DISCRETE SCHEME FOR THE BERIS-EDWARDS SYSTEM
    Weber, Franziska
    Yue, Yukun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (06) : 3275 - 3302
  • [10] Shear flow dynamics in the Beris-Edwards model of nematic liquid crystals
    Murza, Adrian C.
    Teruel, Antonio E.
    Zarnescu, Arghir D.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210):