High-Specific-Energy Self-Supporting Cathodes for Flexible Energy Storage Devices: Progress and Perspective

被引:2
作者
Zhang, Long [1 ]
Zhou, Kaixuan [1 ]
Dai, Xinke [1 ]
Lu, Changjun [2 ]
Li, Jun [2 ]
Yang, Yue [3 ]
Huang, Guoyong [1 ]
Xu, Shengming [4 ]
机构
[1] China Univ Petr, Coll New Energy & Mat, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
[2] Leyard Optoelect Co Ltd, Beijing 100091, Peoples R China
[3] Cent South Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China
[4] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing Key Lab Fine Ceram, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
flexible energy storage devices; flexible self-supporting cathode; electrochemical mechanism; modification strategy; synthesis method; LITHIUM-ION BATTERY; VANADIUM PENTOXIDE; PERFORMANCE; V2O5; ELECTRODE; GRAPHENE; FILM; NANOPARTICLES; ANODES; FIGURE;
D O I
10.1002/aenm.202402400
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of flexible electronics technology has led to the creation of flexible energy storage devices (FESDs). In recent years, flexible self-supporting cathodes have gained significant attention due to their high energy density, excellent mechanical performance, and strong structural plasticity among various cathode materials. Flexible self-supporting cathodes enable larger active material loading capacity and conductive networks for electrodes, thereby perfectly meeting the mechanical and electrochemical performance requirements of FESDs. Currently, the focus of flexible self-supporting cathodes lies in exploring flexible substrates or novel binders to enhance the flexibility of conventional cathode materials. However, the flexibility of cathode poses challenges as they are primarily composed of transition metal oxides, resulting in limited research on their flexibility. A comprehensive review and prospective analysis are of utmost importance to effectively advance the progress of flexible self-supporting cathodes and propel their development forward. Herein, the present discourse delves into the latest advancements concerning flexible self-supporting cathode, focusing on synthesis methodologies, structural design approaches, and characterization parameters. Examining the current progress, the inherent advantages, existing challenges, and potential prospects of these materials are comprehensively elucidated and emphasized. The development of flexible electronics technology has led to the creation of flexible energy storage devices. Herein, this work discourse delves into the latest advancements concerning flexible self-supporting cathode, focusing on synthesis methodologies, structural design approaches, and characterization parameters. Examining the current progress, the inherent advantages, existing challenges, and potential prospects of these materials are comprehensively elucidated and emphasized. image
引用
收藏
页数:36
相关论文
共 50 条
  • [21] Recent Progress of MXene-Based Nanomaterials in Flexible Energy Storage and Electronic Devices
    Yang, Qi
    Wang, Yukun
    Li, Xinliang
    Li, Hongfei
    Wang, Zifeng
    Tang, Zijie
    Ma, Longtao
    Mo, Funian
    Zhi, Chunyi
    ENERGY & ENVIRONMENTAL MATERIALS, 2018, 1 (04) : 183 - 195
  • [22] Novel Pliable Electrodes for Flexible Electrochemical Energy Storage Devices: Recent Progress and Challenges
    Yousaf, Muhammad
    Shi, Hao Tian H.
    Wang, Yunsong
    Chen, Yijun
    Ma, Zhimin
    Cao, Anyuan
    Naguib, Hani E.
    Han, Ray P. S.
    ADVANCED ENERGY MATERIALS, 2016, 6 (17)
  • [23] Flexible Energy Storage Devices Based on Nanomaterials
    Ozgit, D.
    Hiralal, P.
    Amaratunga, G. A. J.
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2016, : 1 - 5
  • [24] Research progress of self-repairing polymers in electrochemical energy storage devices
    Liu Zi-yang
    Li Yang
    Liu Xing-jiang
    Xu Qiang
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2021, 49 (01): : 1 - 10
  • [25] Self-supporting Mg-Sn alloy anode for high-energy Li-ion batteries
    Nan, Wenzheng
    Yan, Shaojiu
    Wang, Jixian
    Dai, Shenglong
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2025, 198
  • [26] Flexible Ferroelectret Polymer for Self-Powering Devices and Energy Storage Systems
    Cao, Yunqi
    Figueroa, Jose
    Pastrana, Juan J.
    Li, Wei
    Chen, Zhiqiang
    Wang, Zhong Lin
    Sepulveda, Nelson
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (19) : 17400 - 17409
  • [27] Hollow Porous CoO@Reduced Graphene Oxide Self-Supporting Flexible Membrane for High Performance Lithium-Ion Storage
    Zhang, Junxuan
    You, Jie
    Wei, Qing
    Han, Jeong-In
    Liu, Zhiming
    NANOMATERIALS, 2023, 13 (13)
  • [28] Research Progress on the Application of Electrically Conductive Hydrogel Electrodes in Flexible Energy Storage Systems
    Zhang, Wei
    Xia, Huan
    Chen, Peng-Yu
    Cao, Xin
    Zhang, Han-Ning
    Xie, Qian
    Yi, Cheng-Jie
    Xu, Gang
    ACTA POLYMERICA SINICA, 2024, 55 (03): : 255 - 274
  • [29] Recent Progress on Laser Manufacturing of Microsize Energy Devices on Flexible Substrates
    Yu, Yongchao
    Wang, Shutong
    Ma, Delong
    Joshi, Pooran
    Hu, Anming
    JOM, 2018, 70 (09) : 1816 - 1822
  • [30] Continuously Reinforced Carbon Nanotube Film Sea-Cucumber-like Polyaniline Nanocomposites for Flexible Self-Supporting Energy-Storage Electrode Materials
    Li, Bingjian
    Liu, Shi
    Yang, Haicun
    Xu, Xixi
    Zhou, Yinjie
    Yang, Rong
    Zhang, Yun
    Li, Jinchun
    NANOMATERIALS, 2022, 12 (01)