Vlasov-Fokker-Planck-Maxwell simulations for plasmas in inertial confinement fusion

被引:1
作者
Zhang, S. T. [1 ]
Li, X. M. [1 ]
Liu, D. J. [1 ]
Li, X. X. [1 ]
Cheng, R. J. [1 ]
Lv, S. Y. [1 ]
Huang, Z. M. [1 ]
Qiao, B. [2 ,3 ]
Liu, Z. J. [1 ,2 ,3 ]
Cao, L. H. [1 ,2 ,3 ]
Zheng, C. Y. [1 ,2 ,3 ]
He, X. T. [1 ,2 ,3 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Peking Univ, Ctr Appl Phys & Technol, Sch Phys, HEDPS, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Inertial confinement fusion; Plasma simulation; Plasma transport processes; Fokker-Planck; TVD scheme; Laser-plasma interactions; NONLOCAL ELECTRON-TRANSPORT; FAST IGNITION; PHYSICS BASIS; EQUATION; WAVES; CODE;
D O I
10.1016/j.cpc.2023.108932
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents a code to simulate collisions and laser-plasma interactions of multiple-species plasmas by solving 1D3V Vlasov-Fokker-Planck-Maxwell equations. The distribution functions of all species are expanded into spherical harmonic series of arbitrary order. Each electron or ion species possesses its distinct and suitable velocity mesh and the number of harmonics. Collisions between different ion species are considered and treated with the Fokker-Planck collision term. The code employs the total variation diminishing (TVD) scheme to avoid numerical instabilities in the region of steep density, rarefied plasma-vacuum interface, and non-periodic boundary conditions, which makes it possible to simulate cases that are close to actual physical scenes. The number of particles is globally conserved for each species, the energy for each species is conserved for collisions between the same species, and total energy is conserved for collisions between different species. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:25
相关论文
共 68 条
[1]   Different Fokker-Planck approaches to simulate electron transport in plasmas [J].
Alouani-Bibi, F ;
Shoucri, MM ;
Matte, JP .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 164 (1-3) :60-66
[2]  
[Anonymous], 2019, The physics of laser plasma interactions
[3]   Modification of classical electron transport due to collisions between electrons and fast ions [J].
Appelbe, B. ;
Sherlock, M. ;
El-Amiri, O. ;
Walsh, C. ;
Chittenden, J. .
PHYSICS OF PLASMAS, 2019, 26 (10)
[4]   Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel [J].
Atzeni, S .
PHYSICS OF PLASMAS, 1999, 6 (08) :3316-3326
[5]   Progress and prospect of fast ignition of ICF targets [J].
Badziak, J. ;
Jablonski, S. ;
Wolowski, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (12B) :B651-B666
[6]   Vlasov simulations of electron-ion collision effects on damping of electron plasma waves [J].
Banks, J. W. ;
Brunner, S. ;
Berger, R. L. ;
Tran, T. M. .
PHYSICS OF PLASMAS, 2016, 23 (03)
[7]   ELECTRON ENERGY-TRANSPORT IN STEEP TEMPERATURE-GRADIENTS IN LASER-PRODUCED PLASMAS [J].
BELL, AR ;
EVANS, RG ;
NICHOLAS, DJ .
PHYSICAL REVIEW LETTERS, 1981, 46 (04) :243-246
[8]   Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov-Fokker-Planck equation [J].
Bell, AR ;
Robinson, APL ;
Sherlock, M ;
Kingham, RJ ;
Rozmus, W .
PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (03) :R37-R57
[9]   Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility [J].
Berger, R. L. ;
Thomas, C. A. ;
Baker, K. L. ;
Casey, D. T. ;
Goyon, C. S. ;
Park, J. ;
Lemos, N. ;
Khan, S. F. ;
Hohenberger, M. ;
Milovich, J. L. ;
Strozzi, D. J. ;
Belyaev, M. A. ;
Chapman, T. ;
Langdon, A. B. .
PHYSICS OF PLASMAS, 2019, 26 (01)
[10]   The frequency and damping of ion acoustic waves in collisional and collisionless two-species plasma [J].
Berger, RL ;
Valeo, EJ .
PHYSICS OF PLASMAS, 2005, 12 (03) :1-16