Mobility-aware parallel offloading and resource allocation scheme for vehicular edge computing

被引:1
|
作者
Men, Rui [1 ]
Fan, Xiumei [2 ]
Yau, Kok-Lim Alvin [3 ]
Shan, Axida [4 ]
Xiao, Yan [2 ]
机构
[1] Longdong Univ, Sch Math & Informat Engn, Qingyang, Peoples R China
[2] Xian Univ Technol, Fac Automat & Informat Engn, Xian, Peoples R China
[3] Univ Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Kajang, Selangor, Malaysia
[4] Baotou Normal Univ, Sch Informat Sci & Technol, Baotou, Peoples R China
关键词
Mobility-aware; Parallel offloading; 5G; C-V2X; Vehicular networks; Edge computing;
D O I
10.1016/j.adhoc.2024.103639
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Vehicle edge computing (VEC) enhances the distributed task processing capability within intelligent vehicle- infrastructure cooperative systems (i-VICS) by deploying servers at the network edge. However, the proliferation of onboard sensors and the continual emergence of new applications have exacerbated the inadequacy of wireless spectrum resources and edge server resources, while the high mobility of vehicles reduces reliability in task processing, resulting in increased communication and task processing delays. To address these challenges, we propose a mobile-aware Many-to-Many Parallel (MTMP) offloading scheme that integrates: a) millimeter- wave (mmWave) and cellular vehicle-to-everything (C-V2X) to mitigate excessive communication delays; and b) leveraging the underutilized resources of surrounding vehicles and parallel offloading to mitigate excessive task processing delays. To minimize the average completion delay of all tasks, this paper formulates the objective as a min-max optimization problem and solves it using the maximum entropy method (MEM), the Lagrange multiplier method, and an iterative algorithm. Extensive experimental results demonstrate the superior performance of the proposed scheme in comparison with other baseline algorithms. Specifically, our proposal achieves a 47 % reduction in task completion delay under optimal conditions, a 31.3 % increase in task completion rate, and a 30 % decrease in program runtime compared to the worst-performing algorithm.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Joint offloading decision and resource allocation in vehicular edge computing networks
    Wang, Shumo
    Song, Xiaoqin
    Xu, Han
    Song, Tiecheng
    Zhang, Guowei
    Yang, Yang
    Digital Communications and Networks, 2025, 11 (01) : 71 - 82
  • [42] Task Classification for Optimal Offloading and Resource Allocation in Vehicular Edge Computing
    Mubashir, Memona
    Ahmad, Rizwan
    Saadat, Ahsan
    Chaudhry, Saqib Rasool
    Kiani, Adnan K.
    Alam, Muhammad Mahtab
    2023 EIGHTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING, FMEC, 2023, : 15 - 21
  • [43] Joint offloading decision and resource allocation in vehicular edge computing networks
    Shumo Wang
    Xiaoqin Song
    Han Xu
    Tiecheng Song
    Guowei Zhang
    Yang Yang
    Digital Communications and Networks, 2025, 11 (01) : 71 - 82
  • [44] Joint Social-Aware and Mobility-Aware Computation Offloading in Heterogeneous Mobile Edge Computing
    Xu, Chenglin
    Xu, Cheng
    Li, Bo
    Li, Siqi
    Li, Tao
    IEEE ACCESS, 2022, 10 : 28600 - 28613
  • [45] Asynchronous Federated Learning Based Mobility-aware Caching in Vehicular Edge Computing
    Wang, Wenhua
    Zhao, Yu
    Wu, Qiong
    Fan, Qiang
    Zhang, Cui
    Li, Zhengquan
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 171 - 175
  • [46] Mobility-Aware Resource Allocation in Multi-Access Edge Computing using Deep Reinforcement Learning
    Din, Najamul
    Chen, Haopeng
    Khan, Daud
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 202 - 209
  • [47] Mobility-Aware Offloading and Resource Allocation in NOMA-MEC Systems via DC
    Li, Changxiang
    Wang, Hong
    Song, Rongfang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (05) : 1091 - 1095
  • [48] Mobility-Aware Offloading and Resource Allocation Strategies in MEC Network Based on Game Theory
    Xia C.
    Jin Z.
    Su J.
    Li B.
    Wireless Communications and Mobile Computing, 2023, 2023
  • [49] Mobility-Aware Efficient Task Offloading with Dependency Guarantee in Mobile Edge Computing Networks
    Wu, Qi
    Chen, Guolin
    Huang, Xiaoxia
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 350 - 357
  • [50] A Mobility-Aware and Fault-Tolerant Service Offloading Method in Mobile Edge Computing
    Long, Tingyan
    Ma, Yong
    Xia, Yunni
    Xiao, Xuan
    Peng, Qinglan
    Zhao, Jiale
    2022 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2022), 2022, : 67 - 72