Hypoxic microenvironment promotes diabetic wound healing by polarizing macrophages to the M2 phenotype in vivo

被引:2
|
作者
Cai, Feiyu [1 ]
Wang, Peng [2 ]
Yuan, Mengling [1 ]
Chen, Wenjiao [1 ]
Liu, Yi [1 ]
机构
[1] Lanzhou Univ, Dept Burns & Plast Surg & Wound Repair Surg, Hosp 2, Lanzhou, Gansu, Peoples R China
[2] Air Force Mil Med Univ, Affiliated Hosp 1, Dept Burns & skin Surg, Xian, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Deferoxamine; Diabetic wounds; Heat shock proteins; Hypoxic microenvironment; Macrophage polarization;
D O I
10.1007/s10735-024-10244-y
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
BackgroundIn diabetic wounds, M2 polarization of macrophages regulates the transition from an inflammatory phase to a proliferative phase. Prior investigations have demonstrated the potential of deferoxamine (DFO) in creating a localized hypoxic microenvironment, which could stimulate angiogenesis by promoting vascular endothelial growth factor (VEGF) secretion in diabetic wound healing. Nevertheless, there is still no clear information on whether this chemically induced hypoxic microenvironment modulates macrophage polarization to promote diabetic wound healing.MethodsThe 18 diabetic mice were randomly divided into three groups: a control group (n = 6), a 100 mu M DFO group (n = 6), and a 200 mu M DFO group (n = 6). Subsequently, a full-thickness wound with a diameter of 1.00 cm was created on the dorsal region of the diabetic mice. Observe wound closure regularly during treatment. At the end of the observation, tissue specimens were collected for a series of experiments and analyses, including hematoxylin and eosin (H&E), Masson, immunofluorescent, and immunohistochemical staining. The role and mechanism of DFO in regulating macrophage polarization were studied using RAW264.7 cells.ResultsIn comparison to the control group, the administration of DFO notably facilitates wound healing in diabetic mice. In diabetic wounds, DFO increases blood supply by upregulating VEGF, which promotes angiogenesis. Additionally, The expression of HSP70 and CD206 were also upregulated by DFO in both vivo and in vitro, while iNOS expression was downregulated. Additionally, knk437 inhibited the expression of HSP70 in RAW264.7 cells, resulting in a reduction of M2 polarization and an increase in M1 polarization.ConclusionThe induction of a hypoxic microenvironment by DFO has been found to exert a substantial influence on the process of diabetic wound healing. DFO treatment enhances the capacity of diabetic wounds to stimulate angiogenesis and modulate macrophage polarization that may be associated with HSP70 expression, thereby expediting the transition of these wounds from an inflammatory to a proliferative state.
引用
收藏
页码:967 / 976
页数:10
相关论文
共 50 条
  • [1] Resveratrol accelerates wound healing by inducing M2 macrophage polarisation in diabetic mice
    Ding, Youjun
    Yang, Ping
    Li, Shiyan
    Zhang, Hao
    Ding, Xiaofeng
    Tan, Qian
    PHARMACEUTICAL BIOLOGY, 2022, 60 (01) : 2328 - 2337
  • [2] B cells recruitment promotes M2 macrophage polarization to inhibit inflammation during wound healing
    Yin, Yuye
    Wu, Shusheng
    CLINICAL AND EXPERIMENTAL IMMUNOLOGY, 2025, 219 (01)
  • [3] Adrenergic receptor β2 activation by stress promotes breast cancer progression through macrophages M2 polarization in tumor microenvironment
    Qin, Jun-fang
    Jin, Feng-jiao
    Li, Ning
    Guan, Hai-tao
    Lan, Lan
    Ni, Hong
    Wang, Yue
    BMB REPORTS, 2015, 48 (05) : 295 - 300
  • [4] Hypoxia endothelial cells-derived exosomes facilitate diabetic wound healing through improving endothelial cell function and promoting M2 macrophages polarization
    Cheng, Peng
    Xie, Xudong
    Hu, Liangcong
    Zhou, Wu
    Mi, Bobin
    Xiong, Yuan
    Xue, Hang
    Zhang, Kunyu
    Zhang, Yuxiao
    Hu, Yiqiang
    Chen, Lang
    Zha, Kangkang
    Lv, Bin
    Lin, Ze
    Lin, Chuanlu
    Dai, Guandong
    Hu, Yixin
    Yu, Tengbo
    Hu, Hankun
    Liu, Guohui
    Zhang, Yingze
    BIOACTIVE MATERIALS, 2024, 33 : 157 - 173
  • [5] Preclinical study of engineering MSCs promoting diabetic wound healing and other inflammatory diseases through M2 polarization
    Wu, Di
    Liu, Rencun
    Cen, Xiaotong
    Dong, Wanwen
    Chen, Qing
    Lin, Jiali
    Wang, Xia
    Ling, Yixia
    Mao, Rui
    Sun, Haitao
    Huang, Rui
    Su, Huanxing
    Xu, Hongjie
    Qin, Dajiang
    STEM CELL RESEARCH & THERAPY, 2025, 16 (01)
  • [6] The oxidized hyaluronic acid hydrogels containing paeoniflorin microspheres regulates the polarization of M1/M2 macrophages to promote wound healing
    Liu, Jiarui
    Chen, Siqi
    Zhang, Zijing
    Song, Xitong
    Hou, Zhiquan
    Wang, Ziyi
    Liu, Tao
    Yang, Liqun
    Liu, Yunen
    Luo, Zhonghua
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 282
  • [7] Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing
    Yang, Hao
    Song, Liu
    Sun, Bingxue
    Chu, Di
    Yang, Leilei
    Li, Meng
    Li, Huan
    Dai, Yun
    Yu, Zhuo
    Guo, Jianfeng
    MATERIALS TODAY BIO, 2021, 12
  • [8] A Smart MMP-9-responsive Hydrogel Releasing M2 Macrophage-derived Exosomes for Diabetic Wound Healing
    Meng, Hao
    Su, Jianlong
    Shen, Qi
    Hu, Wenzhi
    Li, Pinxue
    Guo, Kailu
    Liu, Xi
    Ma, Kui
    Zhong, Weicheng
    Chen, Shengqiu
    Ma, Liqian
    Hao, Yaying
    Chen, Junli
    Jiang, Yufeng
    Li, Linlin
    Fu, Xiaobing
    Zhang, Cuiping
    ADVANCED HEALTHCARE MATERIALS, 2025,
  • [9] TSLP promote M2 macrophages polarization and cardiac healing after myocardial infarction
    Liu, Debin
    Guo, Mengqi
    Zhou, Peng
    Xiao, Jie
    Ji, Xiaoping
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 516 (02) : 437 - 444
  • [10] A Biphasic Calcium Phosphate Cement Enhances Dentin Regeneration by Dental Pulp Stem Cells and Promotes Macrophages M2 Phenotype In Vitro
    Gu, Yingzhi
    Xie, Xianju
    Zhuang, Rui
    Weir, Michael D.
    Oates, Thomas W.
    Bai, Yuxing
    Zhao, Liang
    Xu, Hockin H. K.
    TISSUE ENGINEERING PART A, 2021, 27 (17-18) : 1113 - 1127