An Improved CNN-LSTM Algorithm for Detection of DGA Domain Name

被引:0
|
作者
Qi, Guorong [1 ]
Mao, Jian [1 ]
机构
[1] Jimei Univ, Coll Comp Engn, Xiamen 361021, Peoples R China
来源
PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023 | 2023年
关键词
domain name generation algorithm; dictionary based domain name generation algorithm; convolutional neural network; long-term and short-term memory network; domain name detection;
D O I
10.1145/3650400.3650618
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, zombie networks have utilized domain name generation algorithm (DGA) to generate a large number of malicious domain names for network attacks, posing a threat to network security. The existing DGA domain names are mainly divided into dictionary type and character type. However, traditional deep learning methods cannot simultaneously detect two types of DGA domain names, especially dictionary based DGA domain names. Therefore, this study proposes a network model that combines convolutional neural networks (CNN) and long-short term memory (LSTM) networks - the CNN-LSTM model. The model consists of three parts: character embedding layer, feature extraction layer, and fully connected layer. This model can extract N-grams features of domain name characters through CNN and input the extraction results to LSTM. At the same time, the model can choose to use multiple sets of CNN in combination with LSTM. In addition, based on the extracted features, this model can classify and predict domain names generated by dictionary based DGA. The experimental results show that the proposed model performs best when the convolutional kernel sizes selected by CNN are 3 and 4. In the comparative experiments of four dictionary based DGA families, the CNN-LSTM model showed a 3.0% improvement in accuracy compared to the CNN model, and as the number of sample families increased, the CNN-LSTM model exhibited better stability.
引用
收藏
页码:1293 / 1298
页数:6
相关论文
共 50 条
  • [41] Rapid forecasting of hydrogen concentration based on a multilayer CNN-LSTM network
    Shi, Yangyang
    Ye, Shenghua
    Zheng, Yangong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [42] Classification of RF Transmitters in the Presence of Multipath Effects using CNN-LSTM
    Patil, Pradnya
    Wei, Zhuangkun
    Petrunin, Ivan
    Guo, Weisi
    2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, : 82 - 87
  • [43] Deep insight into daily runoff forecasting based on a CNN-LSTM model
    Deng, Huiqi
    Chen, Wenjie
    Huang, Guoru
    NATURAL HAZARDS, 2022, 113 (03) : 1675 - 1696
  • [44] A hybrid CNN-LSTM model for high resolution melting curve classification
    Ozkok, Fatma Ozge
    Celik, Mete
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [45] Predicting the Household Power Consumption Using CNN-LSTM Hybrid Networks
    Kim, Tae-Young
    Cho, Sung-Bae
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2018, PT I, 2018, 11314 : 481 - 490
  • [46] Wind Farm Power Transfer Forecasting Method Based on CNN-LSTM
    Tang Q.
    Xiang Y.
    Dai J.
    Li Z.
    Sun W.
    Liu J.
    Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2024, 56 (02): : 91 - 99
  • [47] Hourly Photovoltaic Power Forecasting Using CNN-LSTM Hybrid Model
    Obiora, Chibuzor N.
    Ali, Ahmed
    2021 62ND INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT SCIENCE OF RIGA TECHNICAL UNIVERSITY (ITMS), 2021,
  • [48] Deep insight into daily runoff forecasting based on a CNN-LSTM model
    Huiqi Deng
    Wenjie Chen
    Guoru Huang
    Natural Hazards, 2022, 113 : 1675 - 1696
  • [49] Fault Diagnosis of Nuclear Power Plant Based on Sparrow Search Algorithm Optimized CNN-LSTM Neural Network
    Zhang, Chunyuan
    Chen, Pengyu
    Jiang, Fangling
    Xie, Jinsen
    Yu, Tao
    ENERGIES, 2023, 16 (06)
  • [50] Massive MIMO CSI reconstruction using CNN-LSTM and attention mechanism
    Zhang, Zufan
    Zheng, Yue
    Gan, Chenquan
    Zhu, Qingyi
    IET COMMUNICATIONS, 2020, 14 (18) : 3089 - 3094