A planar plume array emanating from an atmospheric pressure argon plasma jet employing floating electrodes

被引:0
|
作者
Wu, Kaiyue [1 ,2 ]
Chen, Mo [1 ]
Ran, Junxia [1 ,2 ]
Jia, Pengying [1 ,3 ]
Wu, Jiacun [1 ]
Li, Xuechen [1 ]
机构
[1] Hebei Univ, Coll Phys Sci & Technol, Baoding 071002, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Hebei Univ, Coll Phys Sci & Technol, Hebei Key Lab Photoelect Informat & Mat, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
BARRIER DISCHARGE;
D O I
10.1063/5.0222875
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Large-scale plasma plumes downstream of plasma jets are in urgent need from a practical viewpoint. In this Letter, an argon plasma jet with floating electrodes is proposed to produce a large-scale planar plume array. Results indicate that with increasing peak voltage (Vp), the planar plume array elongates gradually and scales up in the lateral direction to an optimal value of 90.0 mm. There is only one discharge pulse per voltage half cycle, whose intensity and duration increase with increasing Vp. Moreover, there is a time lag between the initiations of individual plumes. Fast photography reveals that the planar plume array originates from the repeated process of some micro-discharge filaments stretching along the argon stream. By optical emission spectroscopy, the spatial distribution of plasma parameters is obtained, such as electron density, electron temperature, and gas temperature. At last, the planar plume array is employed to test the surface modification of polyethylene terephthalate, for which a uniform modification has been realized with a scan velocity of 1.0 cm/min. These results are of great significance for the development of large-scale atmospheric pressure plasma sources.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Comparison of two cold atmospheric pressure plasma jet configurations in argon
    Jogi, Indrek
    Talviste, Rasmus
    Raud, Sirli
    Raud, Juri
    Plank, Toomas
    Moravsky, Ladislav
    Klas, Matej
    Matejcik, Stefan
    CONTRIBUTIONS TO PLASMA PHYSICS, 2020, 60 (03)
  • [42] Atmospheric pressure argon plasma jet using a cylindrical piezoelectric transformer
    Kim, Hyun
    Brockhaus, Albrecht
    Engemann, Juergen
    APPLIED PHYSICS LETTERS, 2009, 95 (21)
  • [43] Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon
    Xu Guimin
    Zhang Guanjun
    Shi Xingmin
    Ma Yue
    Wang Ning
    Li Yuan
    PLASMA SCIENCE & TECHNOLOGY, 2009, 11 (01) : 83 - 88
  • [44] Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet
    Uhm, Han S.
    Lim, Jin P.
    Li, Shou Z.
    APPLIED PHYSICS LETTERS, 2007, 90 (26)
  • [45] Kinetic modelling for an atmospheric pressure argon plasma jet in humid air
    Van Gaens, W.
    Bogaerts, A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (27)
  • [46] Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon
    许桂敏
    张冠军
    石兴民
    马跃
    王宁
    李元
    Plasma Science and Technology, 2009, 11 (01) : 83 - 88
  • [47] The effect of a second grounded electrode on the atmospheric pressure argon plasma jet
    Mohamed A.-A.H.
    Aljuhani M.M.
    Almarashi J.Q.M.
    Alhazime A.A.
    Plasma Research Express, 2020, 2 (01):
  • [48] THE EFFECT OF MIXING OXYGEN TO ARGON COLD ATMOSPHERIC PRESSURE PLASMA JET
    Basher, Abdulrahman H.
    Almarashi, Jamal Qemas M.
    Mohamed, Abdel-Aleam H.
    Ouf, Salaina A.
    2016 43RD IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2016,
  • [49] Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon
    许桂敏
    张冠军
    石兴民
    马跃
    王宁
    李元
    Plasma Science and Technology, 2009, (01) : 83 - 88
  • [50] Influence of gas flow on argon microwave plasma jet at atmospheric pressure
    Iio, Shouichiro
    Yanagisawa, Kosuke
    Uchiyama, Chizuru
    Teshima, Katsuya
    Ezumi, Naomichi
    Ikeda, Toshihiko
    SURFACE & COATINGS TECHNOLOGY, 2011, 206 (06): : 1449 - 1453