Differentially private federated learning with local momentum updates and gradients filtering

被引:0
|
作者
Zhang, Shuaishuai [1 ]
Huang, Jie [1 ,2 ]
Li, Peihao [1 ]
Liang, Chuang [1 ]
机构
[1] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 211189, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
关键词
Federated learning; Differential privacy; Gaussian mechanism; Momentum updates;
D O I
10.1016/j.ins.2024.120960
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Differential Privacy (DP) is applied in Federated Learning (FL) for defending against various privacy attacks. Existing methods based on Gaussian mechanism require the operations of clipping and adding noise, leading to significant accuracy degradation. In this paper, we propose a novel FL scheme named DPFL-LMG to provide user-level DP guarantee while maintaining a high model accuracy. Our main idea is to mitigate the negative effects of the clipping on the model convergence by decreasing the L-2 norm of local updates and the cross-client update variance. Specifically, our method includes two techniques, Local Momentum Updates (LMU) and Gradients Filtering (GF). LMU combines local updates of different rounds in a momentum way. It can significantly decrease the cross-client update variance by weakening the gradient noise in local updates caused by stochastic gradient descent (SGD) algorithm. GF estimates the gradient noise in each element of local updates by observing the element-wise variance. Elements with large noise are considered unnecessary and are zeroed out for the reduction of local update norms. We theoretically analyze the privacy guarantee and the convergence of our method. Experiments demonstrate that DPFL-LMG can effectively mitigate the accuracy degradation caused by clipping and outperform previous DPFL methods in the accuracy.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Profit-Maximizing Model Marketplace with Differentially Private Federated Learning
    Sun, Peng
    Chen, Xu
    Liao, Guocheng
    Huang, Jianwei
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2022), 2022, : 1439 - 1448
  • [32] Personalized Differentially Private Federated Learning without Exposing Privacy Budgets
    Liu, Junxu
    Lou, Jian
    Xiong, Li
    Meng, Xiaofeng
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4140 - 4144
  • [33] CSRA: Robust Incentive Mechanism Design for Differentially Private Federated Learning
    Yang, Yunchao
    Hu, Miao
    Zhou, Yipeng
    Liu, Xuezheng
    Wu, Di
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 892 - 906
  • [34] Joint Client Selection and Privacy Compensation for Differentially Private Federated Learning
    Xu, Ruichen
    Zhang, Ying-Jun Angela
    Huang, Jianwei
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [35] Differentially Private Federated Learning in Edge Networks: The Perspective of Noise Reduction
    Li, Yiwei
    Wang, Shuai
    Chi, Chong-Yung
    Quek, Tony Q. S.
    IEEE NETWORK, 2022, 36 (05): : 167 - 172
  • [36] Privacy-Preserving Federated Learning with Differentially Private Hyperdimensional Computing
    Piran, Fardin Jalil
    Chen, Zhiling
    Imani, Mohsen
    Imani, Farhad
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [37] ADPF: Anti-inference differentially private protocol for federated learning
    Zhao, Zirun
    Lin, Zhaowen
    Sun, Yi
    COMPUTER NETWORKS, 2025, 261
  • [38] Concentrated Differentially Private Federated Learning With Performance Analysis
    Hu, Rui
    Guo, Yuanxiong
    Gong, Yanmin
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2021, 2 : 276 - 289
  • [39] Distributionally Robust Federated Learning for Differentially Private Data
    Shi, Siping
    Hu, Chuang
    Wang, Dan
    Zhu, Yifei
    Han, Zhu
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 842 - 852
  • [40] Differentially Private Federated Learning with Heterogeneous Group Privacy
    Jiang, Mingna
    Wei, Linna
    Cai, Guoyue
    Wu, Xuangou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 143 - 150