Investigation of energy management strategy based on deep reinforcement learning algorithm for multi-speed pure electric vehicles

被引:0
|
作者
Yang, Weiwei [1 ]
Luo, Denghao [1 ]
Zhang, Wenming [1 ]
Zhang, Nong [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mech Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Hefei Univ Technol, Automot Res Inst, Hefei, Peoples R China
关键词
Pure electric vehicle; energy management strategy; deep reinforcement learning; soft actor-critic; deep deterministic policy gradient; SYSTEM; TRANSMISSION;
D O I
10.1177/09544070241275427
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
With increasingly prominent problems such as environmental pollution and the energy crisis, the development of pure electric vehicles has attracted more and more attention. However, the short range is still one of the main reasons affecting consumer purchases. Therefore, an optimized energy management strategy (EMS) based on the Soft Actor-Critic (SAC) and Deep Deterministic Policy Gradient (DDPG) algorithm is proposed to minimize the energy loss for multi-speed pure electric vehicles, respectively, in this paper. Vehicle speed, acceleration, and battery SOC are selected as state variables, and the action space is set to the transmission gear. The reward function takes into account energy consumption and battery life. Simulation results reveal that the proposed EMS-based SAC has a better performance compared to DDPG in the NEDC cycle, manifested explicitly in the following three aspects: (1) the battery SOC decreases from 0.8 to 0.7339 and 0.73385, and the energy consumption consumes 5264.8 and 5296.6 kJ, respectively; (2) The maximumC-rate is 1.565 and 1.566, respectively; (3) the training efficiency of SAC is higher. Therefore, the SAC-based energy management strategy proposed in this paper has a faster convergence speed and gradually approaches the optimal energy-saving effect with a smaller gap. In the WLTC condition, the SAC algorithm reduces 24.1 kJ of energy compared with DDPG, and the C-rate of SAC is below 1. The maximum value is 1.565, which aligns with the reasonable operating range of vehicle batteries. The results show that the SAC algorithm is adaptable under different working conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Investigation of a Multi-Strategy Ensemble Social Group Optimization Algorithm for the Optimization of Energy Management in Electric Vehicles
    Reddy, Aala Kalananda Vamsi Krishna
    Narayana, Komanapalli Venkata Lakshmi
    IEEE ACCESS, 2022, 10 : 12084 - 12124
  • [42] A Comparative Study of Energy Management Strategies for Battery-Ultracapacitor Electric Vehicles Based on Different Deep Reinforcement Learning Methods
    Xu, Wenna
    Huang, Hao
    Wang, Chun
    Xia, Shuai
    Gao, Xinmei
    ENERGIES, 2025, 18 (05)
  • [43] Reinforcement Learning based Energy Management for Fuel Cell Hybrid Electric Vehicles
    Guo, Liang
    Li, Zhongliang
    Outbib, Rachid
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [44] A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning
    Zhou, Jianhao
    Xue, Siwu
    Xue, Yuan
    Liao, Yuhui
    Liu, Jun
    Zhao, Wanzhong
    ENERGY, 2021, 224
  • [45] PSO Based Energy Management Strategy for Pure Electric Vehicles with Dual Energy Storage Systems
    Esposito, F.
    Isastia, V.
    Meo, S.
    INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE, 2010, 5 (05): : 1862 - 1871
  • [46] An efficient intelligent energy management strategy based on deep reinforcement learning for hybrid electric flying car
    Yang, Chao
    Lu, Zhexi
    Wang, Weida
    Wang, Muyao
    Zhao, Jing
    ENERGY, 2023, 280
  • [47] Multi-Time-Scale Optimal Scheduling Strategy for Marine Renewable Energy Based on Deep Reinforcement Learning Algorithm
    Xu, Ren
    Lin, Fei
    Shao, Wenyi
    Wang, Haoran
    Meng, Fanping
    Li, Jun
    ENTROPY, 2024, 26 (04)
  • [48] A reinforcement learning energy management strategy for fuel cell hybrid electric vehicles considering driving condition classification
    Kang, Xu
    Wang, Yujie
    Chen, Zonghai
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 38
  • [49] Research on Energy Management Strategy of a Hybrid Commercial Vehicle Based on Deep Reinforcement Learning
    Xi, Jianguo
    Ma, Jingwei
    Wang, Tianyou
    Gao, Jianping
    WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (10):
  • [50] Multi-objective optimization of hybrid electric vehicles energy management using multi-agent deep reinforcement learning framework
    Li, Xiaoyu
    Zhou, Zaihang
    Wei, Changyin
    Gao, Xiao
    Zhang, Yibo
    ENERGY AND AI, 2025, 20