Investigation of energy management strategy based on deep reinforcement learning algorithm for multi-speed pure electric vehicles

被引:0
|
作者
Yang, Weiwei [1 ]
Luo, Denghao [1 ]
Zhang, Wenming [1 ]
Zhang, Nong [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mech Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Hefei Univ Technol, Automot Res Inst, Hefei, Peoples R China
关键词
Pure electric vehicle; energy management strategy; deep reinforcement learning; soft actor-critic; deep deterministic policy gradient; SYSTEM; TRANSMISSION;
D O I
10.1177/09544070241275427
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
With increasingly prominent problems such as environmental pollution and the energy crisis, the development of pure electric vehicles has attracted more and more attention. However, the short range is still one of the main reasons affecting consumer purchases. Therefore, an optimized energy management strategy (EMS) based on the Soft Actor-Critic (SAC) and Deep Deterministic Policy Gradient (DDPG) algorithm is proposed to minimize the energy loss for multi-speed pure electric vehicles, respectively, in this paper. Vehicle speed, acceleration, and battery SOC are selected as state variables, and the action space is set to the transmission gear. The reward function takes into account energy consumption and battery life. Simulation results reveal that the proposed EMS-based SAC has a better performance compared to DDPG in the NEDC cycle, manifested explicitly in the following three aspects: (1) the battery SOC decreases from 0.8 to 0.7339 and 0.73385, and the energy consumption consumes 5264.8 and 5296.6 kJ, respectively; (2) The maximumC-rate is 1.565 and 1.566, respectively; (3) the training efficiency of SAC is higher. Therefore, the SAC-based energy management strategy proposed in this paper has a faster convergence speed and gradually approaches the optimal energy-saving effect with a smaller gap. In the WLTC condition, the SAC algorithm reduces 24.1 kJ of energy compared with DDPG, and the C-rate of SAC is below 1. The maximum value is 1.565, which aligns with the reasonable operating range of vehicle batteries. The results show that the SAC algorithm is adaptable under different working conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A comparative study of deep reinforcement learning based energy management strategy for hybrid electric vehicle
    Wang, Zexing
    He, Hongwen
    Peng, Jiankun
    Chen, Weiqi
    Wu, Changcheng
    Fan, Yi
    Zhou, Jiaxuan
    ENERGY CONVERSION AND MANAGEMENT, 2023, 293
  • [32] Energy management strategy for fuel cell electric vehicles based on scalable reinforcement learning in novel environment
    Wang, Da
    Mei, Lei
    Xiao, Feng
    Song, Chuanxue
    Qi, Chunyang
    Song, Shixin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 : 668 - 678
  • [33] Deep reinforcement learning based energy management strategy for fuel cell/battery/supercapacitor powered electric vehicle
    Wang, Jie
    Zhou, Jianhao
    Zhao, Wanzhong
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2022, 1 (02):
  • [34] Research on Deep Reinforcement Learning-based Intelligent Car-following Control and Energy Management Strategy for Hybrid Electric Vehicles
    Tang X.
    Chen J.
    Liu T.
    Li J.
    Hu X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (22): : 237 - 246
  • [35] Adaptive energy management strategy for FCHEV based on improved proximal policy optimization in deep reinforcement learning algorithm
    Lu, Xueqin
    Qian, Shenchen
    Zhai, Xinrui
    Wang, Peiyinquan
    Wu, Tao
    ENERGY CONVERSION AND MANAGEMENT, 2024, 321
  • [36] RESEARCH ON HEV ENERGY MANAGEMENT STRATEGY BASED ON IMPROVED DEEP REINFORCEMENT LEARNING
    Wu, Zhongqiang
    Ma, Boyan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (12) : 8451 - 8468
  • [37] Real-time Dispatch Strategy for Electric Vehicles Based on Deep Reinforcement Learning
    Li H.
    Li G.
    Wang K.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2020, 44 (22): : 161 - 167
  • [38] A Cooperative Charging Control Strategy for Electric Vehicles Based on Multiagent Deep Reinforcement Learning
    Yan, Linfang
    Chen, Xia
    Chen, Yin
    Wen, Jinyu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (12) : 8765 - 8775
  • [39] Transfer Deep Reinforcement Learning-Enabled Energy Management Strategy for Hybrid Tracked Vehicle
    Guo, Xiaowei
    Liu, Teng
    Tang, Bangbei
    Tang, Xiaolin
    Zhang, Jinwei
    Tan, Wenhao
    Jin, Shufeng
    IEEE ACCESS, 2020, 8 : 165837 - 165848
  • [40] Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning
    Tang, Xiaolin
    Zhou, Haitao
    Wang, Feng
    Wang, Weida
    Lin, Xianke
    ENERGY, 2022, 238