Quantifying the influence of snow over sea ice morphology on L-band passive microwave satellite observations in the Southern Ocean

被引:0
|
作者
Zhou, Lu [1 ,2 ]
Stroeve, Julienne [3 ,4 ,5 ]
Nandan, Vishnu [6 ,7 ]
Willatt, Rosemary [4 ,8 ]
Xu, Shiming [9 ,10 ]
Zhu, Weixin [9 ]
Kacimi, Sahra [11 ]
Arndt, Stefanie [12 ,13 ]
Yang, Zifan [14 ]
机构
[1] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands
[2] Univ Gothenburg, Dept Earth Sci, Gothenburg, Sweden
[3] Univ Manitoba, Ctr Earth Observat Sci CEOS, Winnipeg, MB, Canada
[4] UCL, Ctr Polar Observat Modelling CPOM, London, England
[5] Univ Colorado, Natl Snow & Ice Data Ctr NSIDC, Cooperat Inst Res Environm Sci CIRES, Boulder, CO USA
[6] Amrita Univ, Amrita Sch Engn, Dept Elect & Commun Engn, Bengaluru, India
[7] Univ Calgary, Dept Geog, Calgary, AB, Canada
[8] Northumbria Univ, Ctr Polar Observat & Modelling, Dept Geog & Environm Sci, Newcastle Upon Tyne, England
[9] Tsinghua Univ, Dept Earth Syst Sci, Minist Educ, Key Lab Earth Syst Modeling, Beijing, Peoples R China
[10] Univ Corp Polar Res, Beijing, Peoples R China
[11] CALTECH, Jet Prop Lab, Pasadena, CA USA
[12] Alfred Wegener Inst Helmholtz Zentrum Polar & Meer, Bremerhaven, Germany
[13] Univ Hamburg, Inst Oceanog, Hamburg, Germany
[14] Beijing Forestry Univ, Sch Ecol & Nat Conservat, Beijing, Peoples R China
基金
欧盟地平线“2020”; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 英国自然环境研究理事会;
关键词
MASS-BALANCE; LATE WINTER; THICKNESS DISTRIBUTION; OPERATION ICEBRIDGE; SCALE VARIABILITY; EMISSION MODEL; WEDDELL SEA; DEPTH; RETRIEVAL; TEMPERATURE;
D O I
10.5194/tc-18-4399-2024
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Antarctic snow on sea ice can contain slush, snow ice, and stratified layers, complicating satellite retrieval processes for snow depth, ice thickness, and sea ice concentration. The presence of moist and brine-wetted snow alters microwave snow emissions and modifies the energy and mass balance of sea ice. This study assesses the impact of brine-wetted snow and slush layers on L-band surface brightness temperatures (TBs) by synergizing a snow stratigraphy model (SNOWPACK) driven by atmospheric reanalysis data and the RAdiative transfer model Developed for Ice and Snow in the L-band (RADIS-L) v1.0 The updated RADIS-L v1.1 further introduces parameterizations for brine-wetted snow and slush layers over Antarctic sea ice. Our findings highlight the importance of including both brine-wetted snow and slush layers in order to accurately simulate L-band brightness temperatures, laying the groundwork for improved satellite retrievals of snow depth and ice thickness using satellite sensors such as Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP). However, biases in modelled and observed L-band brightness temperatures persist, which we attribute to small-scale sea ice heterogeneity and snow stratigraphy. Given the scarcity of comprehensive in situ snow and ice data in the Southern Ocean, ramping up observational initiatives is imperative to not only provide satellite validation datasets but also improve process-level understanding that can scale up to improving the precision of satellite snow and ice thickness retrievals.
引用
收藏
页码:4399 / 4434
页数:36
相关论文
共 27 条
  • [11] Standing water effect on soil moisture retrieval from L-band passive microwave observations
    Ye, N.
    Walker, J. P.
    Guerschman, J.
    Ryu, D.
    Gurney, R. J.
    REMOTE SENSING OF ENVIRONMENT, 2015, 169 : 232 - 242
  • [12] Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations
    Arndt, Stefanie
    Willmes, Sascha
    Dierking, Wolfgang
    Nicolaus, Marcel
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (08) : 5916 - 5930
  • [13] Seasonal evolution of L-band SAR backscatter over landfast Arctic sea ice
    Mahmud, Mallik S.
    Nandan, Vishnu
    Howell, Stephen E. L.
    Geldsetzer, Torsten
    Yackel, John
    REMOTE SENSING OF ENVIRONMENT, 2020, 251
  • [14] Ice Freeze-Up and Break-Up in Arctic Rivers Observed With Satellite L-Band Passive Microwave Data From 2010 to 2020
    Podkowa, A.
    Kugler, Z.
    Nghiem, S. V.
    Brakenridge, G. R.
    WATER RESOURCES RESEARCH, 2023, 59 (06)
  • [15] Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations
    Kern, Stefan
    Lavergne, Thomas
    Notz, Dirk
    Pedersen, Leif Toudal
    Tonboe, Rasmus Tage
    Saldo, Roberto
    Sorensen, MacDonald
    CRYOSPHERE, 2019, 13 (12) : 3261 - 3307
  • [16] On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data
    Zhou, Lu
    Xu, Shiming
    Liu, Jiping
    Wang, Bin
    CRYOSPHERE, 2018, 12 (03) : 993 - 1012
  • [17] Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers
    Shen, Xiaoyi
    Ke, Chang-Qing
    Li, Haili
    EARTH SYSTEM SCIENCE DATA, 2022, 14 (02) : 619 - 636
  • [18] Ice Retreat in the Russian Arctic Seas and Assessment of the Availability of the Northern Sea Route from Satellite Passive Microwave Observations
    Shalina, E. V.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2015, 51 (09) : 903 - 913
  • [19] An empirical algorithm to map perennial firn aquifers and ice slabs within the Greenland Ice Sheet using satellite L-band microwave radiometry
    Miller, Julie Z.
    Culberg, Riley
    Long, David G.
    Shuman, Christopher A.
    Schroeder, Dustin M.
    Brodzik, Mary J.
    CRYOSPHERE, 2022, 16 (01) : 103 - 125
  • [20] N-parameter retrievals from L-band microwave observations acquired over a variety of crop fields
    Pardé, M
    Wigneron, JP
    Waldteufel, P
    Kerr, YH
    Chanzy, A
    Sobjærg, SS
    Skou, N
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (06): : 1168 - 1178