High-Throughput Sequencing Reveals New Viroid Species in Opuntia in Mexico

被引:0
|
作者
Ortega-Acosta, Candelario [1 ]
Ochoa-Martinez, Daniel L. [1 ]
Rodriguez-Leyva, Esteban [2 ]
机构
[1] Colegio Postgrad, Posgrad Fitosan Fitopatol, Texcoco 56264, Mexico
[2] Colegio Postgrad, Posgrad Fitosan Entomol & Acarol, Texcoco 56264, Mexico
来源
VIRUSES-BASEL | 2024年 / 16卷 / 08期
关键词
viruses in Opuntia; cactaceae; new viroids; Mexico; Pospiviroidae; diversity; 1ST REPORT; VIRUS; ALIGNMENT; INDICA; CROP;
D O I
10.3390/v16081177
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In the main cactus pear (Opuntia ficus-indica)-producing region in the State of Mexico, fruit production occupies the largest cultivated area with 15,800 ha, while 900 ha are cultivated for edible young Opuntia pads ("nopalitos") which are consumed as vegetables. Two composite samples consisting of cladodes of plants for fruit production (n = 6) and another of "nopalitos" (n = 6) showing virus-like symptoms were collected. Both sample sets were subjected to high-throughput sequencing (HTS) to identify the viruses and viroids. The HTS results were verified using RT-PCR and Sanger sequencing. Subsequently, 86 samples including cladodes from "nopalitos", plants for fruit production, xoconostles, and some wild Opuntia were analyzed via RT-PCR with specific primers for the viruses and viroids previously detected via HTS. Three viruses were discovered [Opuntia virus 2 (OV2), cactus carlavirus 1 (CCV-1), and Opuntia potexvirus A (OPV-A)], along with a previously reported viroid [Opuntia viroid 1 (OVd-1)]. Additionally, two new viroids were identified, provisionally named the Mexican opuntia viroid (MOVd, genus Pospiviroid) and Opuntia viroid 2 (OVd-2, genus Apscaviroid). A phylogenetic analysis, pairwise identity comparison, and conserved structural elements analysis confirmed the classification of these two viroids as new species within the Pospiviroidae family. This is the first report of a pospiviroid and two apscaviroids infecting cactus pears in the world. Overall, this study enhances our understanding of the virome associated with cactus pears in Mexico.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] DNA sequencing in high-throughput neuroanatomy
    Kebschull, Justus M.
    JOURNAL OF CHEMICAL NEUROANATOMY, 2019, 100
  • [42] High-throughput sequencing for algal systematics
    Oliveira, Mariana C.
    Repetti, Sonja I.
    Iha, Cintia
    Jackson, Christopher J.
    Diaz-Tapia, Pilar
    Lubiana, Karoline Magalhaes Ferreira
    Cassano, Valeria
    Costa, Joana F.
    Cremen, Ma Chiela M.
    Marcelino, Vanessa R.
    Verbruggen, Heroen
    EUROPEAN JOURNAL OF PHYCOLOGY, 2018, 53 (03) : 256 - 272
  • [43] Optimizing SELEX with high-throughput sequencing
    White, Brian S.
    Ozer, Abdullah
    Lis, John T.
    Shalloway, David
    CANCER RESEARCH, 2012, 72
  • [44] High-throughput sequencing of the melanoma genome
    Kunz, Manfred
    Dannemann, Michael
    Kelso, Janet
    EXPERIMENTAL DERMATOLOGY, 2013, 22 (01) : 10 - 17
  • [45] SnapShot: High-Throughput Sequencing Applications
    Han, Hong
    Nutiu, Razvan
    Moffat, Jason
    Blencowe, Benjamin J.
    CELL, 2011, 146 (06) : 1044 - 1046
  • [46] High-throughput sequencing in vaccine research
    Pasik, Katarzyna
    Domanska-Blicharz, Katarzyna
    JOURNAL OF VETERINARY RESEARCH, 2021, 65 (02) : 131 - 137
  • [47] High-throughput sequencing for biology and medicine
    Soon, Wendy Weijia
    Hariharan, Manoj
    Snyder, Michael P.
    MOLECULAR SYSTEMS BIOLOGY, 2013, 9
  • [48] Role of high-throughput sequencing in oncology
    Rodrigues, Manuel Jorge
    Gomez-Roca, Carlos
    BULLETIN DU CANCER, 2013, 100 (03) : 295 - 301
  • [49] High-Throughput Sequencing and Cancer Genetics
    Bunz, Fred
    CELL CYCLE, 2002, 1 (05) : 320 - +
  • [50] IMMUNE PROFILING WITH HIGH-THROUGHPUT SEQUENCING
    Robins, Harlan
    Carlson, Christopher
    HUMAN IMMUNOLOGY, 2011, 72 : S115 - S115