Chlorobenzene oxidation by electrochemical catalysis with La modified Ti/ IrO2-Ta2O5

被引:0
作者
Yuan, Shicheng [1 ]
Chen, Zhongming [1 ,2 ]
Mi, Jinxing [3 ]
Wang, Pan [1 ,4 ]
Zheng, Jiaren [1 ]
Li, Kunpeng [1 ]
Zhang, Mi [1 ]
Zeng, Fan [1 ,5 ]
Hu, Hui [1 ]
Huang, Hao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Environm Sci & Engn, Hubei Key Lab Multimedia Pollut Cooperat Control Y, Wuhan 430074, Peoples R China
[2] Yancheng City Urban South New Dist Dev & Construct, Fdn Dept, Yancheng 224000, Peoples R China
[3] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Cont, Beijing 100084, Peoples R China
[4] Hubei Prov Acad Ecoenvironm Sci, Wuhan 430074, Peoples R China
[5] Nanjing Inst Technol, Sch Environm Engn, Nanjing 211167, Peoples R China
关键词
Chlorobenzene oxidation; Electrochemical catalysis; Degradation pathway; Modified electrodes; ELECTRODE; SYSTEM;
D O I
10.1016/j.apcata.2024.119865
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a typical VOCs emitted from petrochemical industry, chlorobenzene was selected to study its removal by wet oxidation with electrochemical catalysis. Ti based IrO2-Ta2O5 electrode was used in the advanced oxidation of chlorobenzene, and Sn, Sb, Pt and La were used to modify Ti/IrO2-Ta2O5. Ti/IrO2-Ta2O5-La showed the highest removal rate of chlorobenzene and it reached 99.2 % for the chlorobenzene oxidation, which was 20 % higher than those of the other 3 additions. Oxygen evolution overpotential of Ti/IrO2-Ta2O5-La increased to 1.17 V when compared with Ti/IrO2-Ta2O5 of 1.08 V. EPR tests for free radicals and GC-MS tests for intermediates showed that the main active substance was center dot OH, and the element Cl in chlorobenzene dissociated from the benzene ring under the action with center dot OH to form center dot Cl and ClO center dot radicals. Degradation pathway of chlorobenzene was figured out as chlorobenzene-* phenols-* organic acids-* CO2+H2O.
引用
收藏
页数:10
相关论文
共 50 条
[31]   The electrochemical degradation of enrofloxacin using RuO2-IrO2-TiO2/Ti electrodes: Kinetics, mechanism, and model prediction [J].
Chen, Juxiang ;
Yang, Hongmei ;
Feng, Yuxia ;
Liu, Lin ;
Gao, Yuqiong ;
Shang, Xinrong ;
Varank, Gamze .
JOURNAL OF WATER PROCESS ENGINEERING, 2025, 72
[32]   Phenol Wastewater Degradation by Electrocatalytic Oxidation with RuO2-IrO2-SnO2/Ti Anodes in the High Gravity Field [J].
Gao Jing ;
Yan Junjuan ;
Liu Youzhi ;
Zhang Dongming ;
Chen Lijia .
CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2018, 20 (04) :75-81
[33]   Reactive Black 5 Removal with Electro-Oxidation Method using Ti/IrO2/RuO2 Anode and Stainless Steel Cathode [J].
Farizoglu, Burhanettin ;
Fil, Baybars Ali ;
Uzuner, Suleyman ;
Bicakci, Sabri ;
Er, Eren ;
Kara, Eda Nur .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (04) :3288-3296
[34]   Microwave synthesis of Ti/(RuO2)0.5(IrO2)0.5 anodes: Improved electrochemical properties and stability [J].
Gonzaga, Isabelle M. D. ;
Doria, Aline R. ;
Vasconcelos, Vanessa M. ;
Souza, Felipe M. ;
dos Santos, Mauro C. ;
Hammer, Peter ;
Rodrigo, Manuel A. ;
Eguiluz, Katlin I. B. ;
Salazar-Banda, Giancarlo R. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 874
[35]   Reconstruction of IrO2/(Pb, La)(Zr, Ti)O3 (PLZT) interface by optimization of postdeposition annealing and sputtering conditions [J].
Nomura, Kenji ;
Wang, Wensheng ;
Nakamura, Ko ;
Eshita, Takashi ;
Takai, Kazuaki ;
Ozawa, Soichiro ;
Yamaguchi, Hideshi ;
Mihara, Satoru ;
Hikosaka, Yukinobu ;
Saito, Hitoshi ;
Kataoka, Yuji ;
Kojima, Manabu .
JOURNAL OF APPLIED PHYSICS, 2019, 126 (07)
[36]   Electrochemical treatment of mature landfill leachate using Ti/RuO2-IrO2 and Al electrode: optimization and mechanism [J].
Li, Juan ;
Yang, Zhao-hui ;
Xu, Hai-yin ;
Song, Pei-pei ;
Huang, Jing ;
Xu, Rui ;
Zhang, Yi-jie ;
Zhou, Yan .
RSC ADVANCES, 2016, 6 (53) :47509-47519
[37]   Transport and Electrochemical Properties of Li4Ti5O12-Li2TiO3 and Li4Ti5O12-TiO2 Composites [J].
Kozlova, Anna ;
Uvarov, Nikolai ;
Ulihin, Artem .
MATERIALS, 2022, 15 (17)
[38]   Electrochemical degradation of methylisothiazolinone by using Ti/SnO2-Sb2O3/α, β-PbO2 electrode: Kinetics, energy efficiency, oxidation mechanism and degradation pathway [J].
Wang, Yingcai ;
Chen, Min ;
Wang, Can ;
Meng, Xiaoyang ;
Zhang, Weiqiu ;
Chen, Zefang ;
Crittenden, John .
CHEMICAL ENGINEERING JOURNAL, 2019, 374 (626-636) :626-636
[39]   Electrochemical activation of peroxymonosulfate at Ti/La2O3-PbO2 anode to enhance the degradation of typical antibiotic wastewater [J].
Yu, Sha ;
Zhang, Ruirui ;
Dang, Yuan ;
Zhou, Yuanzhen ;
Zhu, Jun-Jie .
SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 294
[40]   Electrolytic Oxidation of Polynuclear Aromatic Hydrocarbons from Creosote Solution Using TI/IRO2 and TI/SNO2 Circular Mesh Electrodes [J].
Tran, Lan-Huong ;
Drogui, Patrick ;
Mercier, Guy ;
Blais, Jean-Francois .
JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 2009, 135 (10) :1051-1062